Cerrar

No. de sistema: 000042380

LDR _ _ 00000nab^^22^^^^^za^4500
008 _ _ 180523m20179999xx^^r^p^^^^^^z0^^^a0eng^d
040 _ _ a| ECO
c| ECO
043 _ _ a| n-mx-sl
044 _ _ a| xx
245 0 0 a| Technical note
b| application of geophysical tools for tree root studies in forest ecosystems in complex soils
520 1 _ a| While semiarid forests frequently colonize rocky substrates, knowledge is scarce on how roots garner resources in these extreme habitats. The Sierra San Miguelito Volcanic Complex in central Mexico exhibits shallow soils and impermeable rhyolitic-rock outcrops, which impede water movement and root placement beyond the soil matrix. However, rock fractures, exfoliated rocks and soil pockets potentially permit downward water percolation and root growth. With ground-penetrating radar (GPR) and electrical resistivity tomography (ERT), two geophysical methods advocated by Jayawickreme et al. (2014) to advance root ecology, we advanced in the method development studying root and water distribution in shallow rocky soils and rock fractures in a semiarid forest. We calibrated geophysical images with in situ root measurements, and then extrapolated root distribution over larger areas. Using GPR shielded antennas, we identified both fine and coarse pine and oak roots from 0.6 to 7.5cm diameter at different depths into either soil or rock fractures. We also detected, trees anchoring their trunks using coarse roots underneath rock outcroppings. With ERT, we tracked monthly changes in humidity at the soil–bedrock interface, which clearly explained spatial root distribution of both tree species. Geophysical methods have enormous potential in elucidating root ecology. More interdisciplinary research could advance our understanding in belowground ecological niche functions and their role in forest ecohydrology and productivity.
533 _ _ a| Reproducción electrónica en formato PDF
538 _ _ a| Adobe Acrobat profesional 6.0 o superior
650 _ 4 a| Raíces
650 _ 4 a| Ecosistemas forestales
650 _ 4 a| Suelos volcánicos
650 _ 4 a| Ecohidrología
651 _ 4 a| Complejo Volcánico de la Sierra San Miguelito (San Luis Potosí, México)
700 1 _ a| Rodríguez Robles, Ulises
700 1 _ a| Arredondo Moreno, José Tulio
e| coaut.
n| 7005418638
700 1 _ a| Huber Sannwald, Elisabeth
e| coaut.
n| 55995941700
700 1 _ a| Ramos Leal, José Alfredo
e| coaut.
700 1 _ a| Yépez González, Enrico Arturo
e| coaut.
773 0 _
t| Biogeosciences
g| No. 14 (Nov. 2017), p. 5343-5357
x| 1726-4170
856 4 1 u| https://www.biogeosciences.net/14/5343/2017/
z| Artículo electrónico
856 _ _ u| http://aleph.ecosur.mx:8991/F?func=service&doc_library=CFS01&local_base=CFS01&doc_number=000042380&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
y| Artículo electrónico
902 _ _ a| GOG / MM
904 _ _ a| Mayo 2018
905 _ _ a| Artecosur
905 _ _ a| Servibosques
905 _ _ a| Biblioelectrónica
906 _ _ a| Producción Académica ECOSUR
LNG eng
Cerrar
Technical note: application of geophysical tools for tree root studies in forest ecosystems in complex soils
Rodríguez Robles, Ulises (autor)
Arredondo Moreno, José Tulio (autor)
Huber Sannwald, Elisabeth (autor)
Ramos Leal, José Alfredo (autor)
Yépez González, Enrico Arturo (autor)
Contenido en: Biogeosciences. No. 14 (Nov. 2017), p. 5343-5357. ISSN: 1726-4170
No. de sistema: 42380
Tipo: Artículo
PDF PDF


Inglés

"While semiarid forests frequently colonize rocky substrates, knowledge is scarce on how roots garner resources in these extreme habitats. The Sierra San Miguelito Volcanic Complex in central Mexico exhibits shallow soils and impermeable rhyolitic-rock outcrops, which impede water movement and root placement beyond the soil matrix. However, rock fractures, exfoliated rocks and soil pockets potentially permit downward water percolation and root growth. With ground-penetrating radar (GPR) and electrical resistivity tomography (ERT), two geophysical methods advocated by Jayawickreme et al. (2014) to advance root ecology, we advanced in the method development studying root and water distribution in shallow rocky soils and rock fractures in a semiarid forest. We calibrated geophysical images with in situ root measurements, and then extrapolated root distribution over larger areas. Using GPR shielded antennas, we identified both fine and coarse pine and oak roots from 0.6 to 7.5cm diameter at different depths into either soil or rock fractures. We also detected, trees anchoring their trunks using coarse roots underneath rock outcroppings. With ERT, we tracked monthly changes in humidity at the soil–bedrock interface, which clearly explained spatial root distribution of both tree species. Geophysical methods have enormous potential in elucidating root ecology. More interdisciplinary research could advance our understanding in belowground ecological niche functions and their role in forest ecohydrology and productivity."


  • Adobe Acrobat profesional 6.0 o superior