Cerrar

No. de sistema: 000058389

LDR _ _ 00000nab^^22^^^^^za^4500
008 _ _ 170810m20179999xx^^r^p^^^^^^z0^^^a0eng^d
040 _ _ a| ECO
c| ECO
043 _ _ a| nccr---
044 _ _ a| xx
245 0 0 a| Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system
506 _ _ a| Acceso electrónico sólo para usuarios de ECOSUR
520 1 _ a| In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees.
650 _ 4 a| Coffea arabica
650 _ 4 a| Árboles de sombra
650 _ 4 a| Productividad agrícola
650 _ 4 a| Biomasa
650 _ 4 a| Competencia interespecífica
650 _ 4 a| Cafetal
650 _ 4 a| Sistemas agroforestales
651 _ 4 a| Turrialba (Costa Rica)
700 1 _ a| Charbonnier, Fabien Sylvain Jacky
700 1 _ a| Roupsard, Olivier
e| coaut.
700 1 _ a| Le Maire, Guerric
e| coaut.
700 1 _ a| Guillemot, Joannès
e| coaut.
700 1 _ a| Casanoves, Fernando
e| coaut.
700 1 _ a| Lacointe, André
e| coaut.
700 1 _ a| Vaast, Philippe
e| coaut.
700 1 _ a| Allinne, Clémentine
e| coaut.
700 1 _ a| Audebert, Louise
e| coaut.
700 1 _ a| Cambou, Aurélie
e| coaut.
700 1 _ a| Clément Vidal, Anne
e| coaut.
700 1 _ a| Defrenet, Elsa
e| coaut.
700 1 _ a| Duursma, Remko A.
e| coaut.
n| 6602225064
700 1 _ a| Jarri, Laura
e| coaut.
700 1 _ a| Jourdan, Christophe
e| coaut.
n| 7005740556
700 1 _ a| Khac, Emmanuelle
e| coaut.
700 1 _ a| Leandro, Patricia
e| coaut.
700 1 _ a| Medlyn, Belinda E.
e| coaut.
n| 6603835282
700 1 _ a| Saint André, Laurent
e| coaut.
700 1 _ a| Thaler, Philippe
e| coaut.
700 1 _ a| Van den Meersche, Karel
e| coaut.
700 1 _ a| Barquero Aguilar, Alejandra
e| coaut.
700 1 _ a| Lehner, Peter
e| coaut.
700 1 _ a| Dreyer, Erwin
e| coaut.
773 0 _
t| Plant, Cell and Environment
g| Vol. 40, no. 8 (Jun 2017), p. 1592-1608
x| 1365-3040
900 _ _ a| Solicítelo con su bibliotecario/a
901 _ _ a| Artículo con arbitraje
902 _ _ a| BG / MM
904 _ _ a| Agosto 2017
905 _ _ a| Artecosur
905 _ _ a| Café
905 _ _ a| Biblioelectrónica
LNG eng
Cerrar
PDF
  • Consulta (1)




Inglés

"In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees."