Términos relacionados

2,000 resultados encontrados para: TEMA: Bosques
  • «
  • 1 de 200
  • »
1.
Artículo
*En hemeroteca, SIBE-San Cristóbal
Fire and the development of oak forests: in eastern North America, oak distribution reflects a variety of ecological paths and disturbance conditions
Abrams, Marc D. ;
Contenido en: BioScience Vol. 42, no. 5 (May 1992), p. 346-353 ISSN: 0006-3568
Bibliotecas: San Cristóbal
Cerrar
SIBE San Cristóbal
B9544 (Disponible)
Disponibles para prestamo: 1
Nota: En hemeroteca, SIBE-San Cristóbal

2.
Artículo
*En hemeroteca, SIBE-San Cristóbal
Transition and gap models of forests dynamics
Acevedo, Miguel F. ; Urban, Dean L. (coaut.) ; Ablan, M. (coaut.) ;
Contenido en: Ecological Applications a Publication of the Ecological Society of America Vol. 5, no. 4 (November 1995), p. 1040-1055 ISSN: 1051-0761
Bibliotecas: San Cristóbal
Cerrar
SIBE San Cristóbal
B10474 (Disponible)
Disponibles para prestamo: 1
Nota: En hemeroteca, SIBE-San Cristóbal
PDF

3.
Artículo
*En hemeroteca, SIBE-Tapachula
Propiedades físicas, químicas y mineralógicas de suelos forestales en Acaxochitlan, Hidalgo, México
Acevedo Sandoval, Otilio Arturo ; Valera Pérez, Miguel Ángel (coaut.) ;
Contenido en: Universidad y Ciencia Vol. 26, no. 2 (agosto 2010), p. 137-150 ISSN: 0186-2979
Bibliotecas: Tapachula
Cerrar
SIBE Tapachula
50557-10 (Disponible)
Disponibles para prestamo: 1
Nota: En hemeroteca, SIBE-Tapachula
PDF
Resumen en: Español | Inglés |
Resumen en español

El estado de Hidalgo, cuenta con una superficie total de 2 110 573 ha, de éstas el 22% de los suelos tienen características ácidas, que requieren de evaluarse y determinar sus factores físico-químicos que permitan desarrollar prácticas agronómicas tendientes a mejorar su potencialidad para uso forestal o agrícola. Los objetivos de este estudio fueron a) determinar las propiedades físicas, químicas y mineralógicas de los suelos ácidos en el estado de Hidalgo, México, y b) clasificar los suelos de acuerdo al criterio de la IUSS Working Group WRB (2006). Los suelos estudiados presentan un buen drenaje, de colores que van de 10YR4/3 a 5YR4/4 (Munsell Color Chart), densidad aparente menor de 1 Mg m􀀀3, densidad real varía de 1.54 a 2.15 Mg m􀀀3; de textura franco, franco arenosa y arcillosa; pH (en agua 1:2.5) varió de 6.7 a 4.9, ligeramente ácido a muy ácido; CIC alta (promedio de 30 cmol+kg􀀀1), materia orgánica mayor del 4% en los horizontes superiores. En la fracción arcilla está caracterizada por caolinita, haloisita 7 Å, y óxidos de hierro (goethita). La secuencia de los óxidos lábiles en los horizontes Bt es: Fe2O3 > Al2O3 > SiO2 lo que indica una etapa de intemperización avanzada de los minerales. Los suelos fueron clasificados como diferentes Alisoles (IUSS Working Group WRB, 2006).

Resumen en inglés

The state of Hidalgo has a total surface of 2 110 573 ha, of which 22% has characteristically acid soils that need to be evaluated to determine the physico-chemical factors that will allow the development of agricultural practices that will improve their use in forestry or agriculture. The objectives of this study were a) to determine the physical, chemical and mineralogical properties of the acid soils in the state of Hidalgo, Mexico, and b) to classify the soils following the criterium of the IUSS Working Group WRB (2006). The soils present good drainage, soil colours that vary from 10YR4/3 to 5YR4/4 (Munsell Color Chart), a bulk density lower than 1 Mg m􀀀3, a particle density from 1.54 to 2.15 MG m􀀀3, soil textures are loam, sandy loam and clay, the pH (in water 1:2.5) varied from 6.7 to 4.9, slightly acid to very acid; a high CEC (average of 30 cmol+kg􀀀1), and organic matter geater than 4% in the surface horizons. The clay fraction is characterised by kaolinite, halloysite 7 Å and iron oxides (goethite). The sequence of free oxides in the Bt horizons is: Fe2O3 > Al2O3 > SiO2 , which indicates a stage of advanced mineral weathering. The soils were classified as different Alisols (IUSS Working Group WRB, 2006).


Índice | Resumen en: Inglés |
Resumen en inglés

This sourcebook provides a consensus perspective from the global community of earth observation and carbon experts on methodological issues relating to quantifying the greenhouse gas (GHG) impacts of implementing mitigation activities related to the forest land use in developing countries (REDD+). At current status of negotiation five forestrelated activities have been listed to be implemented as mitigation actions by developing countries, namely: reducing emissions from deforestation (which implies a land-use change) and reducing emissions from forest degradation, conservation of forest carbon stocks, sustainable management of forest, Enhancement of forest carbon stocks (all relating to carbon stock changes and GHG emissions within managed forest land use). The UNFCCC negotiations and related country submissions on REDD+ have advocated that methodologies and tools become available for estimating emissions and removals from deforestation and forest land management with an acceptable level of certainty. Based on the current status of negotiations and UNFCCC approved methodologies, the Sourcebook aims to provide additional explanation, clarification, and methodologies to support REDD+ early actions and readiness mechanisms for building national REDD+ monitoring systems. It compliments the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas Inventories and it is aimed at being fully consistent with this IPCC Guidelines and with the UNFCCC reporting guidelines on annual inventories (FCCC/SBSTA/2006/9). The book emphasizes the role of satellite remote sensing as an important tool for monitoring changes in forest cover, provides guidance on how to obtain credible estimates of forest carbon stocks and related changes, and provides clarification on the use of IPCC Guidelines for estimating and reporting GHG emissions and removals from forest lands.

The sourcebook is the outcome of an ad-hoc REDD+ working group of “Global Observation of Forest and Land Cover Dynamics” (GOFC-GOLD, www.fao.org/gtos/gofcgold/), a technical panel of the Global Terrestrial Observing System (GTOS). The working group has been active since the initiation of the UNFCCC REDD+ process in 2005, has organized REDD+ expert workshops, and has contributed to related UNFCCC/SBSTA side events and GTOS submissions. GOFC-GOLD provides an independent expert platform for international cooperation and communication to formulate scientific consensus and provide technical input to the discussions and for implementation activities. A number of international experts in remote sensing, carbon measurement and reporting under the UNFCCC have contributed to the development of this sourcebook. With political discussions and negotiations ongoing, the current document provides the starting point for defining an appropriate monitoring framework considering current technical capabilities to monitor gross GHG emissions from changes in forest cover by deforestation and forest land management. This sourcebook is a living document and further methods and technical details can be specified and added with evolving negotiations and science. Respective communities are invited to provide comments and feedback to evolve a more detailed and refined guidelines document in the future.

Índice

1 Introduction
1.1 Purpose and Scope of the Sourcebook
1.2 IPCC Context and Requirements
1.2.1 LULUCF in the UNFCCC and Kyoto Protocol
1.2.2 Definition of forests, deforestation and degradation
1.2.3 General method for estimating CO2 emissions and removals
1.2.4 Reference levels and benchmark forest area map
1.3 Clarifying REDD+ Elements Causing Forest Carbon Stock Change
1.4 Emerging Issues for REDD+ Implementation
1.5 Roadmap for the Sourcebook
2 Guidance on Methods
2.1 Monitoring Of Changes In Forest Area
2.1.1 Scope of chapter
2.1.2 Monitoring of changes of forest areas - deforestation and forestation
2.2 Monitoring of Change in Forest Land Remaining Forest Land
2.2.1 Direct approach to monitor selective logging
2.2.2 Indirect approach to monitor forest degradation
2.2.3 Key references for Section 2.2.
2.3 Estimation of Above Ground Carbon Stocks
2.3.1 Scope of chapter
2.3.2 Overview of carbon stocks, and issues related to C stocks
2.3.3 Which Tier should be used?
2.3.4 Stratification by carbon stocks
2.3.5 Estimation of carbon stocks of forests undergoing change
2.3.6 Estimation of soil carbon stocks
2.4 Methods for Estimating CO2 Emissions from Deforestation and Forest Degradation
2.4.1 Scope of chapter
2.4.2 Linkage to 2006 IPCC Guidelines
2.4.3 Organization of chapter
2.4.4 Fundamental carbon estimating issues
2.4.5 Estimation of emissions from deforestation
2.4.6 Estimation of emissions from forest degradation
2.5 Methods for Estimating GHG Emissions from Biomass Burning
2.5.1 Scope of chapter
2.5.2 Introduction
2.5.3 IPCC guidelines for estimating fire-related emission
2.5.4 Mapping fire from space
2.5.5 Using existing products
2.5.6 Case studies
2.5.7 Key references for Section 2.5.
2.6 Estimation of Uncertainties
2.6.1 Scope of chapter
2.6.2 General concepts
2.6.3 Quantification of uncertainties

2.6.4 Key references for Section 2.6.
2.7 Methods to Address Emerging Issues for REDD+ Implementation
2.7.1 Identifying drivers of deforestation and degradation with remote sensing
2.7.2 Safeguards to ensure protection of biodiversity
2.7.3 Safeguards to ensure rights of forest dwellers
2.7.4 Monitoring displacement of emissions and permanence at a national scale
2.7.5 Linking national and sub-national monitoring
2.8 Guidance on Reporting
2.8.1 Scope of chapter
2.8.2 Overview of reporting principles and procedures
2.8.3 What are the major challenges for developing countries?
2.8.4 The conservativeness approach
2.8.5 Key references for chapter 2.8.
2.9 Status of Evolving Technologies
2.9.1 Scope of chapter
2.9.2 Role of LIDAR observations
2.9.3 Forest monitoring using Synthetic Aperture Radar (SAR) observations
2.9.4 Integration of satellite and in situ data for biomass mapping
2.9.5 Targeted airborne surveys to support carbon stock estimations – a case study
2.9.6 Modeling and forecasting forest-cover change
2.9.7 Cloud-computing and web-based approaches to support national forest monitoring
2.9.8 Summary and recommendations
2.9.9 Key references for Section 2.9.
3 Practical Examples for Data Collection
3.1 Methods Used By Annex-1 Countries for National Lulucf Inventories
3.1.1 Scope of chapter
3.1.2 Methods for estimating forest area changes
3.1.3 Methods for estimating carbon stock changes
3.1.4 National carbon budget models
3.1.5 Estimation of uncertainties
3.1.6 Key References for section 3.1.
3.2 Overview of the Existing Forest Area Changes Monitoring Systems
3.2.1 Scope of chapter
3.2.2 National case studies
3.2.3 Key references for Section

3.3 From National Forest Inventory to National Forest GHG Inventories
3.3.1 Scope of chapter
3.3.2 Introduction on forest inventories in tropical countries
3.3.3 Indian national forest inventory (NFI)
3.3.4 GHG emissions in Mexico from land-use change and forestry
3.3.5 Key references for Section 3.3.
3.4 Community Forest Monitoring
3.4.1 Scope of chapter: rationale for community based inventories
3.4.2 How communities can make their own forest inventories
3.4.3 Additional data requirements
3.4.4 Reliability and accuracy
3.4.5 Costs
3.4.6 Options for independent assessment of locally collected data
3.4.7 Emerging information needs and technologies for locally collected data
4 Country Capacity Building
4.1 Scope of Chapter
4.2 Building National Carbon Monitoring Systems for REDD: Elements And Capacities
4.2.1 Key elements and required capacities - overview
4.2.2 Key elements and required capacities - GHG inventories
4.2.3 Key elements and required capacities - current monitoring capacities
4.3 Capacity Gaps and Cost Implications
4.3.1 Importance of monitoring for establishing a national REDD+ infrastructure
4.3.2 Planning and design
4.3.3 Institutional capacities
4.3.4 Cost factors for monitoring change in forest area
4.3.5 Cost factors for monitoring change in carbon stocks
4.3.6 Spatial data infrastructure, access and reporting procedures
4.4 Linking Monitoring and Policy Development
4.5 Key References for Section 4


5.
Libro
Tres estrategias contra incendios en áreas agropecuarias y forestales / Pedro Acosta Flores
Acosta Flores, Pedro ;
Tuxtla Gutiérrez, Chiapas, México : s.e. , 2008
Clasificación: CH/628.925097275 / A2
Bibliotecas: Villahermosa
Cerrar
SIBE Villahermosa
ECO050006284 (Disponible)
Disponibles para prestamo: 1

6.
Artículo
*En hemeroteca, SIBE-San Cristóbal
Germinación y crecimiento de plántulas de caoba (Swietenia macrophylla King, Meliaceae) en condiciones de vivero
Acosta López, Fernándo Daniel ; Orantes García, Carolina (coaut.) ; Garrido Ramírez, Eduardo Raymundo (coaut.) ;
Contenido en: Lacandonia Año 5, vol. 5, no. 1 (junio 2011), p. 13-20 ISSN: 2007-1000
Bibliotecas: San Cristóbal
Cerrar
SIBE San Cristóbal
51143-10 (Disponible)
Disponibles para prestamo: 1
Nota: En hemeroteca, SIBE-San Cristóbal

7.
Artículo
*En hemeroteca, SIBE-San Cristóbal
Afinidades de la flora genérica de algunos bosques mesófilos de montaña del nordeste, centro y sur de México: un enfoque fenético
Acosta, Salvador ;
Contenido en: Anales del Instituto de Biología, Serie Botánica Vol. 75, no. 1 (2004), p. 61-72
Bibliotecas: San Cristóbal
Cerrar
SIBE San Cristóbal
B4157 (Disponible)
Disponibles para prestamo: 1
Nota: En hemeroteca, SIBE-San Cristóbal

8.
Capítulo de libro - Memoria en extenso
*Solicítelo con su bibliotecario/a
Transformaciones en la distribución y extensión de los manglares de Tabasco, México
Acosta Velázquez, Joanna ; Reyes Díaz Gallegos, José (coaut.) ; Tovilla Hernández, Cristian (coaut.) ;
Contenido en: Memorias: segundo congreso mexicano de ecosistemas de manglar: hacia el aprendizaje continuo y el manejo integral Ciudad del Carmen, Campeche, México : Universidad Autónoma del Carmen, Centro de Investigación de Ciencias Ambientales, 2012 p. 88-89
Nota: Solicítelo con su bibliotecario/a

9.
Libro
Anuario 2003: centros de investigación / Narciso A. Acuña González, editor
Acuña González, Narciso A. (ed.) ;
México : Universidad Autónoma de Campeche, Dirección General de Estudios de Posgrado e Investigación , c2003
Clasificación: CA/001.4097264 / A5
Bibliotecas: San Cristóbal , Tapachula
Cerrar
SIBE San Cristóbal
ECO010007174 (Disponible)
Disponibles para prestamo: 1
Cerrar
SIBE Tapachula
ECO020009657 (Disponible)
Disponibles para prestamo: 1

PDF
Resumen en: Español |
Resumen en español

Here, we use 30 long-term, high-resolution palaeoecological records from Mexico, Central and South America to address two hypotheses regarding possible drivers of resilience in tropical forests as measured in terms of recovery rates from previous disturbances. First, we hypothesize that faster recovery rates are associated with regions of higher biodiversity, as suggested by the insurance hypothesis. And second, that resilience is due to intrinsic abiotic factors that are location specific, thus regions presently displaying resilience in terms of persistence to current climatic disturbances should also show higher recovery rates in the past. To test these hypotheses, we applied a threshold approach to identify past disturbances to forests within each sequence. We then compared the recovery rates to these events with pollen richness before the event. We also compared recovery rates of each site with a measure of present resilience in the region as demonstrated by measuring global vegetation persistence to climatic perturbations using satellite imagery. Preliminary results indeed show a positive relationship between pre-disturbance taxonomic richness and faster recovery rates. However, there is less evidence to support the concept that resilience is intrinsic to a region; patterns of resilience apparent in ecosystems presently are not necessarily conservative through time.