Cerrar

No. de sistema: 000039813

LDR _ _ 00000nab^^22^^^^^za^4500
008 _ _ 190528m20199999xx^^r^p^r^^^^z0^^^a0eng^d
040 _ _ a| ECO
c| ECO
043 _ _ a| n-mx-qr
044 _ _ a| xx
245 0 0 a| Using eDNA to biomonitor the fish community in a tropical oligotrophic lake
520 1 _ a| Environmental DNA (eDNA) is an effective approach for detecting vertebrates and plants, especially in aquatic ecosystems, but prior studies have largely examined eDNA in cool temperate settings. By contrast, this study employs eDNA to survey the fish fauna in tropical Lake Bacalar (Mexico) with the additional goal of assessing the possible presence of invasive fishes, such as Amazon sailfin catfish and tilapia. Sediment and water samples were collected from eight stations in Lake Bacalar on three occasions over a 4-month interval. Each sample was stored in the presence or absence of lysis buffer to compare eDNA recovery. Short fragments (184–187 bp) of the cytochrome c oxidase I (COI) gene were amplified using fusion primers and then sequenced on Ion Torrent PGM or S5 before their source species were determined using a custom reference sequence database constructed on BOLD. In total, eDNA sequences were recovered from 75 species of vertebrates including 47 fishes, 15 birds, 7 mammals, 5 reptiles, and 1 amphibian. Although all species are known from this region, six fish species represent new records for the study area, while two require verification. Sequences for five species (2 birds, 2 mammals, 1 reptile) were only detected from sediments, while sequences from 52 species were only recovered from water. Because DNA from the Amazon sailfin catfish was not detected, we used a mock eDNA experiment to confirm our methods would enable its detection. In summary, we developed protocols that recovered eDNA from tropical oligotrophic aquatic ecosystems and confirmed their effectiveness in detecting fishes and diverse species of vertebrates.
533 _ _ a| Reproducción electrónica en formato PDF
538 _ _ a| Adobe Acrobat profesional 6.0 o superior
650 _ 4 a| Bagre marino
650 _ 4 a| Tilapia (Cichlidae)
650 _ 4 a| Especies invasivas
650 _ 4 a| Peces de agua dulce
650 _ 4 a| ADN ambiental
650 _ 4 a| Monitoreo biológico
651 _ 4 a| Laguna Bacalar, Othón P. Blanco (Quintana Roo, México)
700 1 _ a| Valdéz Moreno, Martha
e| autora
700 1 _ a| Ivanova, Natalia V.
e| autora
700 1 _ a| Elías Gutiérrez, Manuel
e| autor
700 1 _ a| Pedersen, Stephanie L.
e| autora
700 1 _ a| Bessonov, Kyrylo
e| autor
700 1 _ a| Hebert, Paul D. N.
e| autor
773 0 _
t| PLoS One
g| Vol. 14, no. 4, e0215505 (April 2019), p. 1-22
x| 0173-9565
856 4 1 u| https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215505
z| Artículo electrónico
856 _ _ u| http://aleph.ecosur.mx:8991/F?func=service&doc_library=CFS01&local_base=CFS01&doc_number=000039813&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
y| Artículo electrónico
902 _ _ a| GOG / MM
904 _ _ a| Mayo 2019
905 _ _ a| Artecosur
905 _ _ a| Artfrosur
905 _ _ a| Biblioelectrónica
906 _ _ a| Producción Académica ECOSUR
LNG eng
Cerrar
Using eDNA to biomonitor the fish community in a tropical oligotrophic lake
Valdéz Moreno, Martha (autora)
Ivanova, Natalia V. (autora)
Elías Gutiérrez, Manuel (autor)
Pedersen, Stephanie L. (autora)
Bessonov, Kyrylo (autor)
Hebert, Paul D. N. (autor)
Contenido en: PLoS One. Vol. 14, no. 4, e0215505 (April 2019), p. 1-22. ISSN: 0173-9565
No. de sistema: 39813
Tipo: Artículo
PDF PDF


Inglés

"Environmental DNA (eDNA) is an effective approach for detecting vertebrates and plants, especially in aquatic ecosystems, but prior studies have largely examined eDNA in cool temperate settings. By contrast, this study employs eDNA to survey the fish fauna in tropical Lake Bacalar (Mexico) with the additional goal of assessing the possible presence of invasive fishes, such as Amazon sailfin catfish and tilapia. Sediment and water samples were collected from eight stations in Lake Bacalar on three occasions over a 4-month interval. Each sample was stored in the presence or absence of lysis buffer to compare eDNA recovery. Short fragments (184–187 bp) of the cytochrome c oxidase I (COI) gene were amplified using fusion primers and then sequenced on Ion Torrent PGM or S5 before their source species were determined using a custom reference sequence database constructed on BOLD. In total, eDNA sequences were recovered from 75 species of vertebrates including 47 fishes, 15 birds, 7 mammals, 5 reptiles, and 1 amphibian. Although all species are known from this region, six fish species represent new records for the study area, while two require verification. Sequences for five species (2 birds, 2 mammals, 1 reptile) were only detected from sediments, while sequences from 52 species were only recovered from water. Because DNA from the Amazon sailfin catfish was not detected, we used a mock eDNA experiment to confirm our methods would enable its detection. In summary, we developed protocols that recovered eDNA from tropical oligotrophic aquatic ecosystems and confirmed their effectiveness in detecting fishes and diverse species of vertebrates."


  • Adobe Acrobat profesional 6.0 o superior