Términos relacionados

3 resultados encontrados para: AUTOR: Andres Mauricio, Juan
  • «
  • 1 de 1
  • »
Resumen en: Inglés |
Resumen en inglés

Background: Reliable information about the spatial distribution of aboveground biomass (AGB) in tropical forests is fundamental for climate change mitigation and for maintaining carbon stocks. Recent AGB maps at continental and national scales have shown large uncertainties, particularly in tropical areas with high AGB values. Errors in AGB maps are linked to the quality of plot data used to calibrate remote sensing products, and the ability of radar data to map high AGB forest. Here we suggest an approach to improve the accuracy of AGB maps and test this approach with a case study of the tropical forests of the Yucatan peninsula, where the accuracy of AGB mapping is lower than other forest types in Mexico. To reduce the errors in field data, National Forest Inventory (NFI) plots were corrected to consider small trees. Temporal differences between NFI plots and imagery acquisition were addressed by considering biomass changes over time. To overcome issues related to saturation of radar backscatter, we incorporate radar texture metrics and climate data to improve the accuracy of AGB maps. Finally, we increased the number of sampling plots using biomass estimates derived from LiDAR data to assess if increasing sample size could improve the accuracy of AGB estimates.

Results: Correcting NFI plot data for both small trees and temporal differences between field and remotely sensed measurements reduced the relative error of biomass estimates by 12.2%. Using a machine learning algorithm, Random Forest, with corrected field plot data, backscatter and surface texture from the L‑band synthetic aperture radar (PALSAR) installed on the on the Advanced Land Observing Satellite‑1 (ALOS), and climatic water deficit data improved the accuracy of the maps obtained in this study as compared to previous studies (R²=0.44 vs R²= 0.32). However, using sample plots derived from LiDAR data to increase sample size did not improve accuracy of AGB maps (R²= 0.26). Conclusions: This study reveals that the suggested approach has the potential to improve AGB maps of tropical dry forests and shows predictors of AGB that should be considered in future studies. Our results highlight the importance of using ecological knowledge to correct errors associated with both the plot‑level biomass estimates and the mis‑match between field and remotely sensed data.

Resumen en español

A major focus of geographical ecology and macroecology is to understand the causes of spatially structured ecological patterns. However, achieving this understanding can be complicated when using multiple regression, because the relative importance of explanatory variables, as measured by regression coefficients, can shift depending on whether spatially explicit or non-spatial modeling is used. However, the extent to which coefficients may shift and why shifts occur are unclear. Here, we analyze the relationship between environmental predictors and the geographical distribution of species richness, body size, range size and abundance in 97 multi-factorial data sets. Our goal was to compare standardized partial regression coefficients of non-spatial ordinary least squares regressions (i.e. models fitted using ordinary least squares without taking autocorrelation into account; ‘‘OLS models’’ hereafter) and eight spatial methods to evaluate the frequency of coefficient shifts and identify characteristics of data that might predict when shifts are likely. We generated three metrics of coefficient shifts and eight characteristics of the data sets as predictors of shifts.

Typical of ecological data, spatial autocorrelation in the residuals of OLS models was found in most data sets. The spatial models varied in the extent to which they minimized residual spatial autocorrelation. Patterns of coefficient shifts also varied among methods and datasets, although the magnitudes of shifts tended to be small in all cases. We were unable to identify strong predictors of shifts, including the levels of autocorrelation in either explanatory variables or model residuals. Thus, changes in coefficients between spatial and non-spatial methods depend on the method used and are largely idiosyncratic, making it difficult to predict when or why shifts occur. We conclude that the ecological importance of regression coefficients cannot be evaluated with confidence irrespective of whether spatially explicit modelling is used or not. Researchers may have little choice but to be more explicit about the uncertainty of models and more cautious in their interpretation.

Memoria: XXX congreso nacional de entomología
Congreso Nacional de Entomología (30 : 1995 : Chapingo, Estado de México) ;
Distrito Federal, México : Sociedad Mexicana de Entomología , 1995
Clasificación: 595.7 / C6/1995
Bibliotecas: Tapachula
SIBE Tapachula
ECO020001568 (Disponible)
Disponibles para prestamo: 1