Términos relacionados

2 resultados encontrados para: AUTOR: Arreola Villa, Felipe
  • «
  • 1 de 1
  • »
1.
- Artículo con arbitraje
*Solicítelo con su bibliotecario/a
Wet and dry tropical forests show opposite successional pathways in wood density but converge over time
Poorter, Lourens (autor) ; Rozendaal, Danaë M. A. (autora) ; Bongers, Frans (autor) ; Almeida Cortez, Jarcilene Silva (autora) ; Almeyda Zambrano, Angélica María (autora) ; Álvarez, Francisco S. (autor) ; Andrade, José Luis (autor) ; Arreola Villa, Luis Felipe (autor) ; Balvanera, Patricia (autora) ; Becknell, Justin M. (autor) ; Bentos, Tony V. (autor) ; Bhaskar, Radika (autora) ; Boukili, Vanessa (autora) ; Brancalion, Pedro H. S. (autor) ; Broadbent, Eben North (autor) ; César, Ricardo G. (autor) ; Chave, Jerome (autor) ; Chazdon, Robin L. (autor) ; Dalla Colletta, Gabriel (autor) ; Craven, Dylan (autor) ; De Jong, Bernardus Hendricus Jozeph (autor) ; Denslow, Julie Sloan (autora) ; Dent, Daisy H. (autora) ; DeWalt, Saara J. (autora) ; Díaz García, Elisa (autora) ; Dupuy Rada, Juan Manuel (autor) ; Durán, Sandra M. (autora) ; Espírito Santo, Mario M. (autor) ; Fandiño, María C. (autora) ; Fernandes, Geraldo Wilson (autor) ; Finegan, Bryan (autor) ; Granda Moser, Vanessa (autora) ; Hall, Jefferson S. (autor) ; Hernández Stefanoni, José Luis (autor) ; Jakovac, Catarina C. (autora) ; Junqueira, André B. (autor) ; Kennard, Deborah (autra) ; Lebrija Trejos, Edwin (autor) ; Letcher, Susan G. (autora) ; Lohbeck, Madelon (autora) ; López, Omar R. (autor) ; Marín Spiotta, Erika (autora) ; Martínez Ramos, Miguel (autor) ; Martins, Sebastião Venâncio (autor) ; Massoca, Paulo E. S. (autor) ; Meave, Jorge A. (autor) ; Mesquita, Rita C. G (autora) ; Mora, Francisco (autor) ; Moreno, Vanessa de Souza (autora) ; Müller, Sandra C. (autora) ; Muñoz, Rodrigo (autor) ; Muscarella, Robert (autor) ; Nolasco de Oliveira Neto, Silvio (autor) ; Nunes, Yule R. F. (autor) ; Ochoa Gaona, Susana (autora) ; Paz, Horacio (autor) ; Peña Claros, Marielos (autor) ; Piotto, Daniel (autor) ; Ruíz, Jorge (autor) ; Sanaphre Villanueva, Lucía (autora) ; Sánchez Azofeifa, Gerardo Arturo (autor) ; Schwartz, Naomi B. (autora) ; Steininger, Marc K. (autor) ; Thomas, William Wayt (autor) ; Toledo, Marisol (autora) ; Uriarte, María (autora) ; Utrera, Luis P. (autor) ; van Breugel, Michiel (autor) ; van der Sande, Masha T. (coaut.) ; Van Der Wal, Hans (coaut.) ; Veloso, María D. M. (autora) ; Vester, Henricus F. M. (autor) ; Vieira, Ima Celia G. (autora) ; Villa, Pedro Manuel (autor) ; Williamson, G. Bruce (autor) ; Wright, S. Joseph (autor) ; Zanini, Kátia J. (autora) ; Zimmerman, Jess K. (autor) ; Westoby, Mark (autor) ;
Disponible en línea
Contenido en: Nature Ecology & Evolution Vol. 3, no. 6 (Jun 2019), p. 928–934 ISSN: 2397-334X
Nota: Solicítelo con su bibliotecario/a
Resumen en: Inglés |
Resumen en inglés

Tropical forests are converted at an alarming rate for agricultural use and pastureland, but also regrow naturally through secondary succession. For successful forest restoration, it is essential to understand the mechanisms of secondary succession. These mechanisms may vary across forest types, but analyses across broad spatial scales are lacking. Here, we analyse forest recovery using 1,403 plots that differ in age since agricultural abandonment from 50 sites across the Neotropics. We analyse changes in community composition using species-specific stem wood density (WD), which is a key trait for plant growth, survival and forest carbon storage. In wet forest, succession proceeds from low towards high community WD (acquisitive towards conservative trait values), in line with standard successional theory. However, in dry forest, succession proceeds from high towards low community WD (conservative towards acquisitive trait values), probably because high WD reflects drought tolerance in harsh early successional environments. Dry season intensity drives WD recovery by influencing the start and trajectory of succession, resulting in convergence of the community WD over time as vegetation cover builds up. These ecological insights can be used to improve species selection for reforestation. Reforestation species selected to establish a first protective canopy layer should, among other criteria, ideally have a similar WD to the early successional communities that dominate under the prevailing macroclimatic conditions.


2.
- Artículo con arbitraje
*Solicítelo con su bibliotecario/a
Effects of long-term inter-annual rainfall variation on the dynamics of regenerative communities during the old-field succession of a neotropical dry forest
Martínez Ramos, Miguel ; Balvanera, Patricia (coaut.) ; Arreola Villa, Felipe (coaut.) ; Mora, Francisco (coaut.) ; Maass, José Manuel (coaut.) ; Maza Villalobos Méndez, Susana (coaut.) ;
Contenido en: Forest Ecology and Management Vol. 426, (October 2018), p. 91-100 ISSN: 0378-1127
Nota: Solicítelo con su bibliotecario/a
Resumen en: Inglés |
Resumen en inglés

Effects of long-term rainfall inter-annual variation on regeneration dynamics of tropical dry forests (TDF) are still poorly understood. Such understanding is particularly important to assess the regeneration potential of TDF in landscapes subjected to slash-and-burn farming management. Here, we studied from 2004 to 2016 the effects of inter-annual rainfall variation on the dynamics of regenerative communities of woody species during the old-field succession of a TDF in Western Mexico. Over the study period a severe drought, caused by an El Niño Southern Oscillation (ENSO) event in 2005, and two hurricanes (Jova, 2011, magnitude 2; Patricia, 2015, magnitude 4) were experienced. In 2004, we established a chronosequence of abandoned cattle pastures and old-growth forest sites, which were assigned to four successional categories, each one with three sites: Pasture (0–3 years fallow age), Early (3–5 years), Intermediate (8–12 years), and Old-Growth Forest (without any human disturbance). At each site, seedlings, saplings and resprouts 10–100 cm height of shrub and tree species were tagged, taxonomically identified, measured in height and monitored over 12 continuous year intervals. At each year, all new plants reaching 10 cm height were recorded and considered as recruits. Community rates (recruitment, relative growth rate in height, mortality, species gain and species loss) were calculated per year, considering all plants combined and separating shrub from tree species. All community rates varied notoriously in response to temporal rainfall variability, with almost null interaction with successional category. As expected, mortality and species loss rates declined as the amount of rainfall increased, especially when precipitation of the current and the previous year were taken into account; these rates peaked in the ENSO year and were still high in the following year.

Unexpectedly, recruitment and species gain rates also declined with the increase in rainfall, especially with the amount of rainfall in the current year. Overall, community rates of tree species were more responsive than those of shrub species to temporal rainfall variation. The ENSO-related drought event produced a short and transient instability in the plant density and species density of regenerative communities. However, ENSO effects were smoothed out by subsequent rainy years, leading to a net increase in plant density and species density in all successional categories, especially in the younger one. Overall, our study shows that global (e.g. ENSO) and regional (e.g. storms, hurricanes) climate factors play a key role on forest succession, modulating the speed of the TDF regeneration dynamics. We conclude that low impact agricultural land use and the presence of good levels of remnant forest cover in the landscape confers a high potential for regeneration in abandoned agricultural fields, even under the impact of severe droughts and severe hurricanes.