Términos relacionados

3 resultados encontrados para: AUTOR: Balkenhol, Niko
  • «
  • 1 de 1
  • »
1.
- Artículo con arbitraje
Right on track? Performance of satellite telemetry in terrestrial wildlife research
Hofman, Maarten P.G. (autor) ; Hayward, Matt W. (autor) ; Heim, M. (coaut.) ; Marchand, Pascal (autor) ; Rolandsen, Christer Moe (autor) ; Mattisson, Jenny (coaut.) ; Urbano, Ferdinando (autor) ; Heurich, Marco (autor) ; Mysterud, Atle (coaut.) ; Melzheimer, Jörg (autor) ; Morellet, Nicolas (autor) ; Voigt, Ulrich (autor) ; Allen, Benjamin L. (autor) ; Gehr, Benedikt (autor) ; Rouco, Carlos (autor) ; Ullmann, Wiebke (autor) ; Holand, Øystein (autor) ; Jørgensen, Nicolai H. (autor) ; Steinheim, Geir (autor) ; Cagnacci, Francesca (autora) ; Kroeschel, Max (autor) ; Kaczensky, Petra (autora) ; Buuveibaatar, Bayarbaatar (coaut.) ; Payne, John C. (autor) ; Palmegiani, I. (coaut.) ; Jerina, Klemen (autor) ; Kjellander, Petter (autor) ; Johansson, Örjan (coaut.) ; LaPoint, Scott D. (coaut.) ; Bayrakçismith, Rana (autor) ; Linnell, John D. C. (autor) ; Zaccaroni, Marco (autor) ; Jorge, Maria Luisa S. P. (autora) ; Oshima, Júlia Emi Faria (autora) ; Songhurst, Anna C. (autora) ; Fischer, Claude (autor) ; Mc Bride, R. T. (coaut.) ; Thompson, J. J. (coaut.) ; Streif, S. (coaut.) ; Sandfort, Robin (autor) ; Bonenfant, Christophe (autor) ; Drouilly, Marine (autora) ; Klapproth, Matthias (autor) ; Zinner, D. (coaut.) ; Yarnell, R. (coaut.) ; Stronza, A. (coaut.) ; Wilmott, L. (coaut.) ; Meisingset, E. (coaut.) ; Thaker, M. (coaut.) ; Vanak, A. T. (coaut.) ; Nicoloso, S. (coaut.) ; Graeber, R. (coaut.) ; Said, S. (coaut.) ; Boudreau, M. R. (coaut.) ; Devlin, A. (coaut.) ; Hoogesteijn, R. (coaut.) ; May Junior, J.A. (coaut.) ; Nifong, J. C. (coaut.) ; Odden, J. (coaut.) ; Quigley, H. B. (coaut.) ; Tortato, F. (coaut.) ; Parker, D. M. (coaut.) ; Caso, A. (coaut.) ; Perrine, J. (coaut.) ; Tellaeche, C. (coaut.) ; Zieba, F. (coaut.) ; Zwijacz Kozica, T. (coaut.) ; Appel, C. L. (coaut.) ; Axsom, I. (coaut.) ; Bean, W. T. (coaut.) ; Cristescu, B. (coaut.) ; Périquet, S. (coaut.) ; Teichman, K. J. (coaut.) ; Karpanty, S. (coaut.) ; Licoppe, A. (coaut.) ; Menges, V. (coaut.) ; Black, K. (coaut.) ; Scheppers, T. L. (coaut.) ; Schai Braun, S. C. (coaut.) ; Azevedo, F. C. (coaut.) ; Lemos, F. G. (coaut.) ; Payne, A. (coaut.) ; Swanepoel, L. H. (coaut.) ; Weckworth, B. V. (coaut.) ; Berger, A. (coaut.) ; Bertassoni, A. (coaut.) ; McCulloch, G. (coaut.) ; Šustr, P. (coaut.) ; Athreya, V. (coaut.) ; Bockmuhl, D. (coaut.) ; Casaer, J. (coaut.) ; Ekori, A. (coaut.) ; Melovski, D. (coaut.) ; Richard Hansen, C. (coaut.) ; Van De Vyver, D. (coaut.) ; Reyna Hurtado, Rafael Ángel (autor) ; Robardet, E. (coaut.) ; Selva, N. (coaut.) ; Sergiel, A. (coaut.) ; Farhadinia, M. S. (coaut.) ; Sunde, P. (coaut.) ; Portas, R. (coaut.) ; Ambarli, H. (coaut.) ; Berzins, R. (coaut.) ; Kappeler, P. M. (coaut.) ; Mann, G. K. (coaut.) ; Pyritz, L. (coaut.) ; Bissett, C. (coaut.) ; Grant, Tandora (autora) ; Steinmetz, R. (coaut.) ; Swedell, L. (coaut.) ; Welch, R. J. (coaut.) ; Armenteras, D. (coaut.) ; Bidder, O. R. (coaut.) ; González, T. M. (coaut.) ; Rosenblatt, A. (coaut.) ; Kachel, S. (coaut.) ; Balkenhol, Niko (autor) ;
Contenido en: PLoS One Vol. 14, no. 5, e0216223 (May 2019), p. 1-26 ISSN: 19326203
PDF PDF
Resumen en: Inglés |
Resumen en inglés

Satellite telemetry is an increasingly utilized technology in wildlife research, and current devices can track individual animal movements at unprecedented spatial and temporal resolutions. However, as we enter the golden age of satellite telemetry, we need an in-depth understanding of the main technological, species-specific and environmental factors that determine the success and failure of satellite tracking devices across species and habitats. Here, we assess the relative influence of such factors on the ability of satellite telemetry units to provide the expected amount and quality of data by analyzing data from over 3,000 devices deployed on 62 terrestrial species in 167 projects worldwide. We evaluate the success rate in obtaining GPS fixes as well as in transferring these fixes to the user and we evaluate failure rates. Average fix success and data transfer rates were high and were generally better predicted by species and unit characteristics, while environmental characteristics influenced the variability of performance. However, 48% of the unit deployments ended prematurely, half of them due to technical failure. Nonetheless, this study shows that the performance of satellite telemetry applications has shown improvements over time, and based on our findings, we provide further recommendations for both users and manufacturers.


2.
Tesis - Doctorado
*En proceso técnico. Solicítelo con el bibliotecario de SIBE-Campeche
Comportamiento y movimiento de los grandes mamíferos terrestres en paisajes fragmentados: implicaciones para el diseño de corredores biológicos / Ninon France Victoire Meyer
Meyer, Ninon France Victoire ; Reyna Hurtado, Rafael Ángel (Director) ; Martínez Morales, Miguel Ángel (Asesor) (-2020) ; Jordan, Christopher A. (Asesor) ; Balkenhol, Niko (Asesor) ;
Lerma, Campeche, México : El Colegio de la Frontera Sur , 2018
Clasificación: TE/599 / M4
Bibliotecas: Campeche
Cerrar
SIBE Campeche
ECO040006893 (Disponible)
Disponibles para prestamo: 1
Nota: En proceso técnico. Solicítelo con el bibliotecario de SIBE-Campeche
PDF
Índice | Resumen en: Español | Inglés |
Resumen en español

La fragmentación de hábitat es uno de los principales conductores de pérdida de biodiversidad, incluso los mamíferos grandes en ambientes tropicales. Los corredores biológicos, tal como el Corredor Biológico Mesoamericano (CBM), constituyen una herramienta de conservación para restaurar la conectividad funcional en los paisajes fragmentados. El Istmo de Panamá es la última y más estrecha porción del CBM y ha servido desde miles de años como puente terrestre entre América del Norte y América del Sur para el movimiento y flujo de genes de muchas especies. Sin embargo, la funcionalidad de los bosques panameños como corredores de fauna ha sido puesta en duda y nunca ha sido cuantificada de manera adecuada. El objetivo de esta investigación fue evaluar la efectividad del CBM para los mamíferos grandes de Panamá, e identificar áreas importantes para los movimientos y la conservación a largo plazo de dichas especies. Existen muchos enfoques para identificar áreas con alto potencial de conectividad, pero no hay conceso claro sobre el método más correcto y efectivo. En este trabajo use una combinación de datos de ocupación derivados de muestreos de cámaras trampa a gran escala, y datos de movimiento de collares GPS, para investigar el uso de hábitat y los patrones de movimiento de nueve especies de mamíferos grandes, y estimar la resistencia del paisaje, el insumo primario en la modelación de conectividad. Primero, los resultados mostraron que no todas las áreas protegidas en Panamá albergan un ensamblaje intacto de ungulados. También encontré que el jaguar, tapir de Bairdii, pecarí de labios blancos, y oso hormiguero gigante tienen una ocupación baja y que hay muchos vacíos en su distribución a lo largo de Panamá, lo cual sugiere que América del Norte y Sur ya no están conectadas de manera efectiva para algunas especies silvestres.

Basado en este análisis, se identificó al Parque Nacional Darién como una zona de suma importancia para todas las especies focales, en particular el pecarí de labios blancos. Ahí, se encontró que las manadas de esta especie alcanzan a menudo 80 – 100 individuos, y que usan la misma área todo el año, lo cual indica que los bosques del Darién proveen suficiente recursos para soportar los requisitos ecológicos de manadas grandes. Por último, los escenarios de conectividad que se desarrollaron entre zonas núcleos de áreas protegidas para un grupo de especies sensibles a la perturbación de hábitat fueron más estrechos y menos numerosos que los corredores desarrollados para un grupo de especies más tolerantes. Los datos de ocupación también tenían una tendencia a subestimar la conectividad funcional en comparación con los datos de movimiento. Estos hallazgos destacan la importancia de adoptar un enfoque multi-especies, y de considerar el comportamiento durante los movimientos para asegurar una planificación efectiva de corredor. Este estudio indica que para promover la conservación de los grandes mamíferos a largo plazo en Panamá y en la región Centroamericana, los esfuerzos de restauración tienen que ser diseñados a nivel del paisaje, pero que el éxito de los corredores biológicos dependerá en gran parte de consideraciones sociopolíticas y económicas.

Resumen en inglés

Habitat fragmentation is a primary driver of wildlife loss, especially large mammals in the tropics. Wildlife corridor such as the Mesoamerican Biological Corridor (MBC), is a common conservation tool to restore functional connectivity in fragmented landscapes. The Isthmus of Panama is the last and narrowest link of the MBC and has served as a land bridge between North and South America for movement and gene flow of numerous species since thousands of years. However, the current effectiveness of Panama’s forests as corridor was put into question, and has never been adequately quantified. The objective of this research was to evaluate the effectiveness of the MBC for large terrestrial mammals in Panama, and identify important areas for their movement and long-term conservation. Many modeling approaches exist to identify areas with high potential connectivity, but there is no clear consensus on the most accurate, cost-effective method. I used a combination of occupancy data from large-scale camera trapping surveys, and movement data from GPS collars to investigate the habitat use and movement patterns of multiple species of large mammals, and derive landscape resistance, the primary input for connectivity modeling. Results first showed that not all of the protected areas in Panama harbor intact assemblage of ungulates. I also found that the jaguar, Baird’s tapir, whitelipped peccary and giant anteater had low occupancy levels and clear gaps in their distribution throughout Panama, suggesting that Mesoamerica and South America are no longer effectively connected for some forest species. Based on this analysis, the Darien was identified as a stronghold for all the focal species, in particular for the white-lipped peccary.

There, I found that the herds often reach 80-100 individuals, and that they use the same area all year long, indicating that the Darien forest provides sufficient resources to support the ecological requirements of large herds. Finally, the multi-species connectivity scenarios that were developed between core areas for a group of species sensitive to habitat disturbance were narrower and fewer than those developed for a group of tolerant species. The occupancy data also tend to underestimate functional connectivity in comparison with when using movement data. These findings underscore the importance of adopting a multi-species approach, and considering movement behavior to ensure effective corridor planning. Finally, this study highlights that in order to promote the long-term conservation of large mammals in Panama and beyond, restoration efforts must be taken at the landscape level, but the success of wildlife corridors also largely relies on sociopolitical and economic considerations.

Índice

Agradecimientos & Acknowledgments
Resumen
Abstract
I. Introducción
Modelar la resistencia
Corredores para varias especies
Objetivos
Área de Estudio
Estructura de la Tesis
I. Introduction
II. Do Protected Areas in Panama Support Intact Assemblages of Ungulates?
Abstract
Introducción
Material and Methods
Data Analysis
Results
Discussion
Conclusión
Acknowledgments
References
III. Evaluating the Effectiveness of Panama as an Ecological Bridge Between Two Continents for Large Mammals
Abstract
Introduction
Methods
Study area
Camera trapping surveys
Environmental variables
Focal species
Occupancy Models - Data Analysis
Results
Discussion
Acknowledgments
Literature Cited
IV. Spatial Ecology of a Large and Endangered Tropical Mammal : the White-Lipped Peccary in Darien, Panama
Abstract
Introduction
Methods
Study area
Capture and collaring of WLPs
Data Analysis And Home Range
Results
Captures, GPS fix rate, and data period transmission
Home range
Discussion
Acknowledgments
References
V. Towards the Restoration of The Mesoamerican Biological Corridor in Panama : a Multi-Species Approach
Abstract
Introduction
Methods
Study area
Focal species
Environmental variables
Animal locations and movement data
Data Analysis
Occupancy and movement models
Estimating the resistance
From single to multi-species connectivity scenarios
Results
Animal locations and scale of analysis
Occupancy and movement models
Multi-species connectivity scenarios
Discussion
Multi-species scenarios
Effect of data source
Limitations and suggestions
Implications for long-term mammal conservation in Panama
Acknowledgments
References

VI. Conclusión
Estado de Conservación de los Mamíferos, Movimiento y Conectividad Funcional
Sugerencias Para Mejorar Estudios de Fauna Silvestre y Diseños de Conectividad
Perspectivas Para la Conservación de los Mamíferos Grandes en un País de Rápido Crecimiento
VI. Conclusión
Literatura Citada


3.
Libro
Landscape genetics: concepts, methods, applications / edited by Niko Balkenhol, Samuel A. Cushman, Andrew T. Storfer, Lisette P. Waits
Balkenhol, Niko (ed.) ; Cushman, Samuel A. (coed.) ; Storfer, Andrew T. (coed.) ; Waits, Lisette P. (coed.) ;
Hoboken, N.J. : John Wiley & Sons, Ltd. , 2016
Clasificación: 576.58 / L3
Bibliotecas: Chetumal
Cerrar
SIBE Chetumal
ECO030008489 (Disponible)
Disponibles para prestamo: 1
Índice | Resumen en: Inglés |
Resumen en inglés

Despite the substantial interest in landscape genetics from the scientific community, learning about the concepts and methods underlying the field remains very challenging. The reason for this is the highly interdisciplinary nature of the field, which combines population genetics, landscape ecology, and spatial statistics. These fields have traditionally been treated separately in classes and textbooks, and very few scientists have received the interdisciplinary training necessary to efficiently teach or apply the diversity of techniques encompassed by landscape genetics. To address the current knowledge gap, this book provides the first in depth treatment of landscape genetics in a single volume. Specifically, this book delivers fundamental concepts and methods underlying the field, covering particularly important analytical methods in detail, and presenting empirical and theoretical applications of landscape genetics for a variety of environments and species. Consistent with the interdisciplinary nature of landscape genetics, the book combines an introductory, textbook like section with additional sections on advanced topics and applications that are more typical of edited volumes. The chapter topics and the expertise of the authors and the editorial team make the book a standard reference for anyone interested in landscape genetics. The book includes contributions from many of the leading researchers in landscape genetics.

The group of scientists we have assembled has worked on several collaborative projects over the last years, including a large number of peer reviewed papers, several landscape genetics workshops at international conferences, and a distributed graduate seminar on landscape genetics. Based on the experiences gained during these collaborative teaching and research activities, the book includes chapters that synthesize fundamental concepts and methods underlying landscape genetics (Part 1), chapters on advanced topics that deserve a more in depth treatment (Part 2), and chapters illustrating the use of concepts and methods in empirical applications (Part 3). This structure ensures a high usefulness of the book for beginning landscape geneticists and experienced researchers alike, so that it has a broad target audience. At least one of the four co editors is involved in almost every chapter of the book, thereby ensuring a high consistency and coherency among chapters.

Índice

List of contributors
Website
Acknowledgments
Glossary
1 Introduction to Landscape Genetics – Concepts Methods Applications
1.1 Introduction
1.2 Defining landscape genetics
1.3 The three analytical steps of landscape genetics
1.4 The interdisciplinary challenge of landscape genetics
1.5 Structure of this book – concepts methods applications
References
Part 1: Concepts 2 Basics of Landscape Ecology: An Introduction to Landscapes and Population Processes For Landscape Geneticists
2.1 Introduction
2.2 How landscapes affect population genetic processes
2.3 Defining the landscape for landscape genetic research
2.4 Defining populations and characterizing dispersal processes
2.5 Putting it together: combinations of landscape and population models
2.6 Frameworks for delineating landscapes and populations for landscape genetics
2.7 Current challenges and future opportunities
References
3 Basics of Population Genetics: Quantifying Neutral and Adaptive Genetic Variation For Landscape Genetic Studies
3.1 Introduction
3.2 Overview of landscape influences on genetic variation
3.3 Overview of DNA types and molecular methods
3.4 Important population genetic models
3.5 Measuring genetic diversity
3.6 Evaluating genetic structure and detecting barriers
3.7 Estimating gene flow using indirect and direct methods
3.8 Conclusion and future directions
References
4 Basics of Study Design: Sampling Landscape Heterogeneity and Genetic Variation For Landscape Genetic Studies
4.1 Introduction
4.2 Study design terminology used in this chapter
4.3 General study design considerations
4.4 Considerations for landscape genetic study design
4.5 Current knowledge about study design effects in landscape genetics
4.6 Recommendations for optimal sampling strategies in landscape genetics
4.7 Conclusions and future directions
References

5 Basics of Spatial Data Analysis: Linking Landscape and Genetic Data For Landscape Genetic Studies
5.1 Introduction
5.2 How to model landscape effects on genetic variation
5.3 How to model isolation-by-distance
5.4 Future directions. Acknowledgments
References
Part 2: Methods 6 Simulation Modeling in Landscape Genetics
6.1 Introduction
6.2 A brief overview of models and simulations
6.3 General benefits of simulation modeling
6.4 Landscape genetic simulation modeling
6.5 Examples of simulation modeling in landscape genetics
6.6 Designing and choosing landscape genetic simulation models
6.7 The future of landscape genetic simulation modeling
References
7 Clustering and Assignment Methods in Landscape Genetics
7.1 Introduction
7.2 Exploratory data analysis and model-based clustering for population structure analysis
7.3 Spatially explicit methods in landscape genetics
7.4 Spatial EDA methods: spatial PCA and spatial factor analysis
7.5 Spatial MBC methods
7.6 Habitat and environmental heterogeneity models
7.7 Discussion
References
8 Resistance Surface Modeling in Landscape Genetics
8.1 Introduction
8.2 Techniques for parameterizing resistance surfaces
8.3 Estimating connectivity from resistance surfaces
8.4 Statistical validation of resistance surfaces
8.5 The future of the resistance surface in landscape genetics
8.6 Conclusions
References
9 Genomic Approaches in Landscape Genetics
9.1 Introduction
9.2 Current landscape genomics methods
9.3 General challenges in landscape genomics
9.4 Spatial autocorrelation
9.5 Applications of landscape genomics to climate change
References
10 Graph Theory and Network Models in Landscape Genetics
10.1 Introduction
10.2 Background on graph theory
10.3 Landscape genetic applications
10.4 Recommendations for using graph approaches in landscape genetics
10.5 Current research needs

10.6 Conclusion – potential for application of graphs for conservation
References
Part 3: Applications 11 Landscapes and Plant Population Genetics
11.1 Introduction
11.2 Contemporary population genetic processes
11.3 Historical population genetic processes
11.4 Future research
References
12 Applications of Landscape Genetics to Connectivity Research in Terrestrial Animals
12.1 Introduction
12.2 General overview of terrestrial animal study systems and research challenges
12.3 Detecting barriers and defining corridors
12.4 Evaluating population dynamics
12.5 Detecting and predicting the response to landscape change
12.6 Common limitations of landscape genetic studies involving terrestrial animals
12.7 Testing ecological hypotheses about gene flow in heterogeneous landscapes
12.8 Knowledge gaps and future directions
References
13 Waterscape Genetics – Applications of Landscape Genetics to Rivers Lakes and Seas
13.1 Introduction
13.2 Understanding marine and freshwater environments
13.3 Typical research questions and approaches
13.4 Applications of landscape genetic approaches
13.5 Future directions: knowledge gaps research challenges and limitations
Acknowledgments
References
14 Current Status Future Opportunities and Remaining Challenges in Landscape Genetics
14.1 Introduction
14.2 Conclusion 1: issues of scale need to be considered
14.3 Conclusion 2: sampling needs to specifically target landscape genetic questions
14.4 Conclusion 3: choice of appropriate statistical methods remains challenging
14.5 Conclusion 4: simulations play a key role in landscape genetics
14.6 Conclusion 5: measures of genetic variation are rarely developed specifically for landscape genetics
14.7 Conclusion 6: landscape resistance is just one of the possible landscape–genetic relationships

14.8 Conclusion 7: genomics provides novel opportunities but also creates new challenges
14.9 Conclusion 8: the scope of landscape genetics needs to expand
14.10 Conclusion 9: specific hypotheses are rarely stated in current landscape genetic studies
14.11 Conclusion 10 : a comprehensive theory for landscape genetics is currently missing
14.12 The future of landscape genetics
References
Index