Términos relacionados

3 resultados encontrados para: AUTOR: Hayes, Daniel J
  • «
  • 1 de 1
  • »
- Artículo con arbitraje
*Solicítelo con su bibliotecario/a
Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic
Bjorndal, Karen A. ; Bolten, Alan B. (coaut.) ; Chaloupka, Milani (coaut.) ; Saba, Vincent S. (coaut.) ; Bellini, Cláudio (coaut.) ; Marcovaldi, Maria A. G. (coaut.) ; Santos, Armando J. B. (coaut.) ; Wurdig Bortolon, Luis Felipe (coaut.) ; Meylan, Anne B. (coaut.) ; Meylan, Peter A. (coaut.) ; Gray, Jennifer (coaut.) ; Hardy, Robert (coaut.) ; Brost, Beth (coaut.) ; Bresette, Michael (coaut.) ; Gorham, Jonathan C. (coaut.) ; Connett, Stephen (coaut.) ; Van Sciver Crouchley, Barbara (coaut.) ; Dawson, Mike (coaut.) ; Hayes, Deborah (coaut.) ; Diez, Carlos E. (coaut.) ; van Dam, Robert P. (coaut.) ; Willis, Sue (coaut.) ; Nava, Mabel (coaut.) ; Hart, Kristen M. (coaut.) ; Cherkiss, Michael S. (coaut.) ; Crowder, Andrew G. (coaut.) ; Pollock, Clayton (coaut.) ; Hillis-Starr, Zandy (coaut.) ; Muñoz Tenería, Fernando A. (coaut.) ; Herrera Pavón, Roberto Luis (coaut.) ; Labrada Martagón, Vanessa (coaut.) ; Lorences, Armando (coaut.) ; Negrete Philippe, Ana (coaut.) ; Lamont, Margaret M. (coaut.) ; Foley, Allen M. (coaut.) ; Bailey, Rhonda (coaut.) ; Carthy, Raymond R. (coaut.) ; Scarpino, Russell (coaut.) ; McMichael, Erin (coaut.) ; Provancha, Jane A. (coaut.) ; Brooks, Annabelle (coaut.) ; Jardim, Adriana (coaut.) ; López Mendilaharsu, Maria de los Milagros (coaut.) ; González Paredes, Daniel (coaut.) ; Estrades, Andrés (coaut.) ; Fallabrino, Alejandro (coaut.) ; Martínez-Souza, Gustavo (coaut.) ; Vélez Rubio, Gabriela M. (coaut.) ; Boulon Jr., Ralf H. (coaut.) ; Collazo, Jaime A. (coaut.) ; Wershoven, Robert (coaut.) ; Guzmán Hernández, Vicente (coaut.) ; Stringell, Thomas B. (coaut.) ; Sanghera, Amdeep (coaut.) ; Richardson, Peter B. (coaut.) ; Broderick, Annette C. (coaut.) ; Phillips, Quinton (coaut.) ; Calosso, Marta (coaut.) ; Claydon, John A. B. (coaut.) ; Metz, Tasha L. (coaut.) ; Gordon, Amanda L. (coaut.) ; Landry Jr., Andre M. (coaut.) ; Shaver, Donna J. (coaut.) ; Blumenthal, Janice (coaut.) ; Collyer, Lucy (coaut.) ; Godley, Brendan J. (coaut.) ; McGowan, Andrew (coaut.) ; Witt, Matthew J. (coaut.) ; Campbell, Cathi L. (coaut.) ; Lagueux, Cynthia J. (coaut.) ; Bethel, Thomas L. (coaut.) ; Kenyon, Lory (coaut.) ;
Contenido en: Global Change Biology Vol. 23, no. 11 (November 2017), p. 4556–4568 ISSN: 1365-2486
Nota: Solicítelo con su bibliotecario/a
Resumen en: Inglés |
Resumen en inglés

Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles—hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta—exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO)—the strongest on record—combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = −.94) and the Multivariate ENSO Index (MEI) for all years (r = .74). Granger-causality analysis also supports the latter finding.

We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study.

Resumen en: Inglés |
Resumen en inglés

There is an increasing need for approaches to determine reference emission levels and implement policies to address the objectives of Reducing Emissions from Deforestation and Forest Degradation, plus improving forest management, carbon stock enhancement and conservation (REDD+). Important aspects of approaching emissions reductions include coordination and sharing of technology, data, protocols and experiences within and among countries to maximize resources and apply knowledge to build robust monitoring, reporting and veri fi cation (MRV) systems. We propose that enhancing the multiple facets of interoperability could facilitate implementation of REDD+ programs and actions. For this case, interoperability is a collective effort with the ultimate goal of sharing and using information to produce knowledge and apply knowledge gained, by removing conceptual, technological, organizational and cultural barriers. These efforts must come from various actors and institutions, including government ministries/agencies, scientific community, landowners, civil society groups and businesses. Here, we review the case of Mexico as an example of evolving interoperability in developing countries, and highlight challenges and opportunities for implementation of REDD+. Country-specific actions toward a higher degree of interoperability can be complex, expensive and even risky. These efforts provide leadership opportunities and will facilitate science–policy integration for implementation of REDD+, particularly in developing counties.

Resumen en: Inglés |
Resumen en inglés

We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a −327 ± 252 TgC yr−1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (−248 TgC yr−1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (−297 TgC yr−1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr−1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr−1) due to land use change between 1993 and 2002. We compare these inventory-based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is −511 TgC yr−1 and −931 TgC yr−1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional −239 TgC yr−1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.