Términos relacionados

2 resultados encontrados para: AUTOR: Terry, Richard E
  • «
  • 1 de 1
  • »
Resumen en: Inglés |
Resumen en inglés

We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1- km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N–23.4 S) of 375 Pg dry mass, 9–18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15–21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha 1 vs. 21 and 28 Mg ha 1 for the input maps). The fusion method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets.

- Artículo con arbitraje
Resumen en: Inglés |
Resumen en inglés

Tikal has long been viewed as one of the leading polities of the ancient Maya realm, yet how the city was able to maintain its substantial population in the midst of a tropical forest environment has been a topic of unresolved debate among researchers for decades. We present ecological, paleoethnobotanical, hydraulic, remote sensing, edaphic, and isotopic evidence that reveals how the Late Classic Maya at Tikal practiced intensive forms of agriculture (including irrigation, terrace construction, arboriculture, household gardens, and short fallow swidden) coupled with carefully controlled agroforestry and a complex system of water retention and redistribution. Empirical evidence is presented to demonstrate that this assiduously managed anthropogenic ecosystem of the Classic period Maya was a landscape optimized in a way that provided sustenance to a relatively large population in a preindustrial, low-density urban community. This landscape productivity optimization, however, came with a heavy cost of reduced environmental resiliency and a complete reliance on consistent annual rainfall. Recent speleothem data collected from regional caves showed that persistent episodes of unusually low rainfall were prevalent in the mid-9th century A.D., a time period that coincides strikingly with the abandonment of Tikal and the erection of its last dated monument in A.D. 869. The intensified resource management strategy used at Tikal—already operating at the landscape’s carrying capacity—ceased to provide adequate food, fuel, and drinking water for the Late Classic populace in the face of extended periods of drought. As a result, social disorder and abandonment ensued.