Términos relacionados

53 resultados encontrados para: TEMA: Ácaros
  • «
  • 1 de 6
  • »
Water mite diversity (Acariformes: Prostigmata: Parasitengonina: Hydrachnidiae) from karst ecosystems in southern of Mexico: a barcoding approach
Montes Ortiz, Lucia (autora) ; Elías Gutiérrez, Manuel (autor) ;
Disponible en línea
Contenido en: Diversity Volumen 12, número 9, 329 (August 2020), p. 1-16 ISSN: 1424-2818
Resumen en: Inglés |
Resumen en inglés

Water mites represent the most diverse and abundant group of Arachnida in freshwater ecosystems, with about 6000 species described; however, it is estimated that this number represents only 30% of the total expected species. Despite having strong biotic interactions with their community and having the potential to be exceptional bioindicators, they are frequently excluded from studies of water quality or ecology, due to actual and perceived difficulties of taxonomic identification in this group. The objective of this study is to use the variations in the sequences of the mitochondrial cytochrome oxidase subunit I (COI), also known as the DNA barcodes region, as a tool to assess the diversity of water mites at 24 sites in the Yucatan Peninsula of Mexico. We found 77 genetic groups or putative species corresponding to 18 genera: Arrenurus, Atractides, Centrolimnesia, Eylais, Geayia, Hydrodroma, Hydryphantes, Hygrobates, Koenikea, Krendowskia, Limnesia, Limnochares, Mamersellides, Mideopsis, Neumania, Piona, Torrenticola, and Unionicola. This was significant, since there are only 35 species described for this region. Furthermore, this molecular information has allowed us to infer that there are characteristic assemblies per site. These data will facilitate the incorporation of water mites in different studies while the curatorial work continues to assign a Linnaean name.

- Artículo con arbitraje
Resumen en: Inglés |
Resumen en inglés

Ant parasitoidism has been reported in seven of the 26 recognized species of the mite genus Macrodinychus (Machrodynichidae). Macrodynichus sellnicki, previously reported as a parasitoid of the invasive ant Nylanderia fulva in Colombia, is now reported, in the same region, as attacking a native host, Ectatomma sp. 2 (E. ruidum complex). The mite develops within the protective silk cocoon of an Ectatomma pupa and waits for the emergence of the young ant before leaving the cocoon, unmolested. Overall nest prevalence was relatively high (34.6% of the 52 nests containing cocoons) but pupae prevalence was low (4.0%, n=1401 cocoons). Mite life-history (parasite or parasitoid) was context dependent, shifting according to the intensity of the attack on a same host. Contrary to the strictly parasitoidic association of M. sellnicki with N. fulva, single mite attacks against E. ruidum did not result in host killing and solitary M. sellnicki (78.6% of the cases) behaved as parasites. However, in 21.4% of the attacks (0.9% of all available host pupae) more than one mite was involved and behaved as parasitoids, draining the host of its internal fuids and killing it. This is the frst association of a macrodinychid mite with a species of the subfamily Ectatomminae, and the frst ant associated mite for which such a context dependent life-style shift is described.

Fertility life tables of Raoiella indica (Trombidiformes: Tenuipalpidae) at different temperature and humidity levels
Martínez Mejía, David (autor) ; Otero Colina, Gabriel (autor) ; González Gómez, Rebeca (autora) ; Pérez Panduro, Alejandro (autor) ; Valle Mora, Javier Francisco (autor) ;
Disponible en línea
Contenido en: Revista Colombiana de Entomología Volumen 45, número 1, e7810 (2019), p. 1-8 ISSN: 2665-4385
Resumen en: Español | Inglés |
Resumen en español

Se realizó un estudio de tablas de vida y fecundidad de Raoiella indica en foliolos de palma de coco (Cocos nucifera) a temperatura y humedad relativa (HR) controladas, en Texcoco, México, con el objetivo de estimar los parámetros de incremento poblacional de este ácaro. Cohortes de 50 huevos de Raoiella indica de 12 horas de edad se incubaron a 22,5, 25, 27,5 o 30 °C y 40-50 % de HR, así como a 27,5 °C con 30-40, 60-70 u 80-90 % de HR. Se les observó diariamente hasta que murió el último. A las hembras que alcanzaron el estado adulto se les proporcionaron dos machos para promover su apareamiento y luego se registró diariamente su oviposición. Machos de un día de edad se pusieron diariamente en contacto cada uno con una deutoninfa quiescente hembra para observar cuántas veces un macho podía copular, cuando las deutoninfas alcanzaran el estado adulto. Con todas las temperaturas y HR’s, la mortalidad se distribuyó uniformemente a lo largo de las observaciones. Tasa de desarrollo, reproducción y, consecuentemente, parámetros de incremento poblacional, estuvieron significativamente asociados con la temperatura. La mayor tasa intrínseca de incremento poblacional ocurrió a 27,5 °C y 40-50 % de HR. Por sí sola, la HR no afectó significativamente a dichas variables, aunque sus valores extremos tuvieron ligeros efectos negativos. Se observaron aproximadamente cuatro hembras por cada macho. Los machos copularon en promedio con 4,56 hembras; ello sugiere que entre 20 y 30 % de machos bastan para fecundar a todas las hembras presentes.

Resumen en inglés

A study of fertility life tables of Raoiella indica was carried out on coconut (Cocos nucifera) leaflets at controlled temperature and relative humidity (RH) in Texcoco, Mexico, with the objective of estimating the parameters of population increase of this mite. Cohorts of 12-hour-old Raoiella indica eggs were incubated at 22.5, 25, 27.5 or 30 °C and 40-50 % RH, as well as 27.5 °C with 30-40, 60-70 or 80-90 % RH. They were observed daily until the last mite died. Females that attained adulthood were provided with two males to promote mating and their oviposition was recorded daily. Each one-day-old male was put in contact with a female quiescent deutonymph daily to determine how many times a male could copulate after the deutonymph became an adult. With all temperatures and RH’s, mortality was evenly distributed throughout the observations. Developmental rate, reproduction, and, consequently, parameters of population increase were significantly associated with temperature. The highest rate of population increase took place at 27.5 °C and 40-40 RH. By itself, RH did not significantly affect those variables, although its extreme values showed slight negative effects. Approximately four females per male were observed. Males copulated with 4.56 females on average; this suggests that between 20 and 30 % of the males are enough to fertilize all females present.

- Artículo con arbitraje
First evidence of parasitation of a Bosmina (Cladocera) by a water mite larva in a karst sinkhole, in Quintana Roo (Yucatán Peninsula, México)
Montes Ortiz, Lucia ; Goldschmidt, Tom (coaut.) ; Elías Gutiérrez, Manuel (coaut.) ;
Contenido en: Acarologia Vol. 59, no. 1 (2019), p. 111-114 ISSN: 0044-586X
Resumen en: Inglés |
Resumen en inglés

For the first time a parasitic relationship between a water mite larva and a Cladocera is found and documented by scanning electron microscope (SEM) imaging. A Unionicolidaelarva (cf. Unionicola) has been found attached to aBosmina tubicen (Cladocera) collected in a karst sinkhole (cenote) in the southeast of the Yucatán Peninsula (México).

- Artículo con arbitraje
*Solicítelo con su bibliotecario/a
Infestation of Raoiella indica hirst (Trombidiformes: Tenuipalpidae) on host plants of high socio-economic importance for tropical America
Otero Colina, Gabriel (coaut.) ; González Gómez, Rebeca (coaut.) ; Martínez Bolaños, L. (coaut.) ; Otero Prevost, L. G. (coaut.) ; López Buenfil, J. A. (coaut.) ; Escobedo Graciamedrano, R. M. (coaut.) ;
Contenido en: Neotropical Entomology Vol. 45, no. 3 (June 2016), p. 300–309 ISSN: 1678-8052
Nota: Solicítelo con su bibliotecario/a
Resumen en: Inglés |
Resumen en inglés

The mite Raoiella indica Hirst was recently introduced into America, where it has shown amazing ability to disseminate and broaden its range of hosts. An experiment was conducted in Cancún, Mexico, to determine infestation levels of this mite on plants recorded as hosts: coconut palm (Cocos nucifera) of cultivars Pacific Tall and Malayan Dwarf, oil palm (Elaeis guineensis) hybrids Deli x Ghana and Deli x Nigeria, Dwarf Giant banana (Musa acuminata, AAA subgroup Cavendish), Horn plantain (M. acuminata x Musa balbisiana, AAB subgroup Plantain), lobster claw (Heliconia bihai), and red ginger (Alpinia purpurata). Nursery plants of these host species or cultivars were artificially infested with R. indica in February 2011. In the four replications of 10 plants, each plant was infested with 200 R. indica specimens, and the numbers of infesting mites were recorded for 6 months. A maximum of 18,000 specimens per plant were observed on coconut Pacific Tall and Malayan Dwarf, followed by lobster claw, with a maximum of 1000 specimens per plant. Infestations were minimal for the remaining plants. Mite numbers on all plants declined naturally during the rainy season. All plant materials sustained overlapping mite generations, indicating that they are true hosts. Complementarily, infestation level was determined in backyard bananas and plantains. Correlations of infestation with plant height, distance from coconuts, and exposure to direct sunlight were estimated. Both bananas and plantains were infested by R. indica even when situated far from infested coconut palms. A Spearman correlation was found between infestation and plant height, although it was significant only for Silk plantain.

- Artículo con arbitraje
Macrodinychus mites as parasitoids of invasive ants: an overlooked parasitic association
Lachaud, Jean Paul ; Klompen, Hans (coaut.) ; Pérez Lachaud, Gabriela (coaut.) ;
Contenido en: Scientific Reports Vol. 6, no. 29995 (2016), p. 1-10 ISSN: 2045-2322
Resumen en: Inglés |
Resumen en inglés

Mites are frequent ant symbionts, yet the exact nature of their interactions with their hosts is poorly known. Generally, myrmecophilous mites show adaptations for dispersal through phoresis, but species that lack such an adaptation may have evolved unusual specialized relationships with their hosts. The immature stages of Macrodinychus multispinosus develop as ectoparasitoids of pupae of the invasive ant Paratrechina longicornis. Feeding stages show regressed locomotor appendages. These mites complete their development on a single host, sucking all of its body content and therefore killing it. Locally high proportions of parasitized host pupae suggest that M. multispinosus could serve as a biological control agent. This is the ninth species of Macrodinychus reported as ant parasite, and the third known as parasitoid of invasive ants, confirming a unique habit in the evolution of mite feeding strategies and suggesting that the entire genus might be parasitic on ants. Several mites’ characteristics, such as their protective morphology, possible viviparity, lack of a specialized stage for phoretic dispersal, and low host specificity, combined with both the general low aggressiveness of invasive P. longicornis towards other ants and its possible susceptibility to generalist ectoparasites would account for the host shift in native macrodinychid mites.

- Artículo con arbitraje
Chilocorus cacti (Coleoptera: Coccinellidae), a potential natural enemy for the red palm mite in Mexico
Machkour M'Rabet, Salima (autora) ; Ferral Piña, Jhibran (autor) ; Hénaut, Yann (autor) ;
Contenido en: Acta Zoológica Mexicana. Nueva Serie Vol. 31, no. 3 (diciembre 2015), p. 512-517 ISSN: 0065-1737
Resumen en: Español |
Resumen en español

Raoiella indica Hirst (Acari: Tenuipalpidae), el ácaro rojo de las palmas, es una plaga importante en el mundo, dañando plantas comerciales y ornamentales. En 2009 fue observada por primera vez en México y se extendió rápidamente. Puede ocasionar daños importantes a los cultivos y también ha infestado en reservas protegidas. Para limitar el uso de acaricidas, principalmente en áreas protegidas, se han buscado depredadores naturales. Globalmente se han identificado 28 depredadores incluyendo otros ácaros, insectos y hongos. En este estudio, presentamos una nueva especie nativa coccinélida, Chilocorus cacti (Linnaeus), como depredador potencial de R. indica en México.

- Artículo con arbitraje
*En hemeroteca, SIBE-San Cristóbal
Productividad del cultivo de chile jalapeño (Capsicum anuum L.) con manejo orgánico o convencional en Calakmul, Campeche, México
Morón Ríos, Alejandro (1960-) ; Alayón Gamboa, José Armando (coaut.) ;
Contenido en: Avances en Investigación Agropecuaria Vol. 18, no. 3 (septiembre-diciembre 2014), p. 35-40 ISSN: 0188-7890
Bibliotecas: San Cristóbal
SIBE San Cristóbal
53751-10 (Disponible)
Disponibles para prestamo: 1
Nota: En hemeroteca, SIBE-San Cristóbal
Resumen en: Español | Inglés |
Resumen en español

Se compara el rendimiento productivo y económico del cultivo de chile jalapeño con manejo orgánico como alternativa al cultivo convencional que utiliza agroquímicos. Se sembraron dos parcelas con chile jalapeño variedad “Don Benito”, sin riego, manejadas de acuerdo al calendario del agricultor. Durante el ciclo agrícola, mensualmente, se registraron todas las inversiones monetarias realizadas en agroquímicos, jornales, adición de lombricomposta y fitoinsecticidas. También, se registró la biomasa de las plantas y las dimensiones de los frutos. La producción con manejo convencional fue mayor, pero el costo de producción se duplicó en comparación con el cultivo orgánico, afectándose negativamente su rentabilidad.

Resumen en inglés

The productive and economic crop yield under organic management of the jalapeno peeper as an alternative to conventional farming using agrochemicals is compared. Two plots of the jalapeño pepper variety “Don Benito”, managed according to the calendar of the farmer, without irrigation were planted. During the growing season, all monetary investments in agrochemicals, wages, and addition of earthworm compost and insecticides were recorded monthly. Plant biomass and fruit size was also recorded. The production was higher with conventional management, but the cost of production doubled compared to organic farming, thereby affecting profitability negatively.

*En hemeroteca, SIBE-San Cristóbal
Diversidad de microartrópodos (ácaros y colémbolos) de musgos corticícolas en la selva baja de Nicolás Bravo, Quintana Roo
Várguez Noh, Wendy P. ; Cutz Pool, Leopoldo Q. (coaut.) ;
Contenido en: Acta Zoológica Mexicana Nueva Serie, Vol. 29, no. 3 (diciembre 2013), p. 654-665 ISSN: 0065-1737
Bibliotecas: San Cristóbal
SIBE San Cristóbal
53198-10 (Disponible)
Disponibles para prestamo: 1
Nota: En hemeroteca, SIBE-San Cristóbal
Resumen en: Español | Inglés |
Resumen en español

Se compara la diversidad de los microartrópodos (ácaros y colémbolos) en musgos corticícolas de una selva baja inundable de Nicolás Bravo, Quintana Roo, para las temporadas de secas, lluvias y nortes de 2011. Se registraron 28 familias de microartrópodos corticícolas, entre las cuales Galumnidae (52.36%), Isotomidae (10.45%) y Scheloribatidae (9.68%) fueron las más abundantes, representando el 72%, además que mostraron su máxima abundancia en la temporada de lluvias. Se determinó que hay una variación temporal en la densidad de microartrópodos (F (2,27) = 10.62, p<0.05); la mayor densidad se encontró en la temporada de lluvias. La mayor diversidad se registró entre la temporada de secas y nortes. La mayor similitud se observó entre las temporadas de lluvias y nortes (71.58%). Para las familias Isotomidae, Phytoseiidae, Trombididae, Scheloribatidae y Galumnidae se encontró una correlación positiva entre la humedad del musgo y las densidades, mientras que la densidad de Anystidae y Caeculidae mostraron una correlación negativa con la humedad del musgo.

Resumen en inglés

The diversity of microarthropods (mites and springtails) in corticolous moss was compared in the floodable lowland Nicolás Bravo, Quintana Roo, included six sampling, carried out in dry, rainy and north season of 2011. 28 families of microarthropods from corticolous moss were recorded, among which the Galumnidae (52.36%), Isotomidae (10.45 %) and Scheloribatidae (9.68%) families were the most abundant, making up 72%, further that showed their maximum abundance at rainy season. There was temporal variation in the density of microarthropods (F (2, 27) = 10.62, p<0.05); the highest density was found at rainy season. The highest diversity was recorded between dry and north season. The highest similarity was observed between rainy and north season (71.58%). For the families Isotmidae, Phytoseiidae, Trombididae, Scheloribatidae and Galumnidae there was a positive correlation between moisture from moss and density while the density of Anystidae and Caeculidae was negatively correlated with moss moisture.

Mites: ecology, evolution and behaviour : life at a microscale / David Evans Walter, Heather C. Proctor
Walter, David Evans ; Proctor, Heather C. (coaud.) ;
Nueva York : Springer Science+Business Media , 2013
Clasificación: 595.42 / W3
Bibliotecas: Tapachula
SIBE Tapachula
ECO020013192 (Disponible)
Disponibles para prestamo: 1
Índice | Resumen en: Inglés |
Resumen en inglés

More than 40,000 species of mites have been described, and up to 1 million may exist on earth. These tiny arachnids play many ecological roles including acting as vectors of disease, vital players in soil formation, and important agents of biological control. But despite the grand diversity of mites, even trained biologists are often unaware of their significance. Mites: Ecology, Evolution and Behaviour (2nd edition) aims to fill the gaps in our understanding of these intriguing creatures. It surveys life cycles, feeding behaviour, reproductive biology and host-associations of mites without requiring prior knowledge of their morphology or taxonomy. Topics covered include evolution of mites and other arachnids, mites in soil and water, mites on plants and animals, sperm transfer and reproduction, mites and human disease, and mites as models for ecological and evolutionary theories.


1 What Good Are Mites?
What Is a Mite?
Why Study Mites?
What Follows?
2 The Origin of Mites: Fossil History and Relationships
The Cambrian Explosion and the Rise of the Arthropoda
The First Major Dichotomy: Mandibulata Versus Chelicerata
A Review of Arthropod Limb Structure, Metamerism and Tagmosis
Marine Euchelicerates
Scorpionida: The First Arachnids?
The Origin of the Arachnids: A Palaeofantasy
Arachnids and the Colonisation of Land
Fossil Mites
Fossil Acariformes
Fossil Parasitiformes
Potential Arachnid Relatives of Mites
Summary and Preview
3 Systematic and Morphological Survey
What Is ‘Acari’? The Question of Mite Monophyly
Parasitiformes: Ticks and Their Relatives
Acariformes: The Mite-Like Mites
How Do Mites Do the Things They Do?
Sensing, Feeding, Silk and Sex: The Gnathosoma
Moving, Sensing and Interacting: The Legs
Digestion and Excretion
Keeping It All In: The Cuticle
Identifying Mite Superorders and Orders
Key to the Superorders and Orders of the Acari
4 Life Cycles, Development and Size
Parental Care
Egg Number and Egg Size
Postembryonic Development
Prelarva and Larva
Suppression and Skipping of Stages
Life Cycle of the Parasitengona
Paedomorphosis, Progenesis and Neoteny
Size, Developmental Rate and Generation Times
Overview of Mite Size Patterns
Developmental Rates and Generation Times
Dissociation Between Body Size and Developmental Rate in Mesostigmata
Dispersal, Migration and Phoresy
Migratory Stages
5 Sex and Celibacy
Modes of Sperm Transfer
Distribution of Sperm-Transfer Modes Among Non-Acarine Animals
Diversity of Sperm-Transfer Behaviours in Mites
Reproductive Anatomy
The Parasitiformes: Elaborations on a Theme

The Adventurous Acariformes
Spermatophore Structure and Function
Exploding Sperm Packets
Fields of Fragrant Spermatophores
Sexual Selection
Intrasexual Competition: Male Modifi cations for Mate Monopolisation
Intersexual Selection as an Agent of Morphological and Behavioural Change
Contentsxi Parthenogenesis
Why Have Sex?
Distribution of Parthenogenesis in Mites
Sex-Ratio Manipulation
Immaculate Conception: Did Sexual Astigmatans Arise from Asexual Oribatids?
6 Mites in Soil and Litter Systems
The Enigma of Soil Biodiversity
What Is Soil?
Forest Floor Habitats
Ephemeral Versus Stable Soil-Litter Habitats
Mites, the Rhizosphere and Mycorrhizae
How Deep Is Soil?
Mites and Decomposition
Soil Mites in a Simple System: Antarctica
Antarctic Mites
An Antarctic Food Web
Feeding Guilds and Functional Groups
Comminuting Microbivore–Detritivores: Grazers and Browsers
Piercing-Sucking Microbivores
Filter-Feeding Microbivores
Direct Plant Parasites
Mites and Moss
Indirect Plant Parasites
The Worm-Eaters: Nematophages
Predators of Arthropods
Predation in the Soil
Cruise and Pursuit Predators
Ambush or Sit-and-Wait Predators
Saltatory Search
Constraints and Variations
Intraguild Predation
Avoiding Predation: Defences of Mites and Mite Prey
Chemical Defence
Autotomy, Armour, Hairs, Dirt and Thanatosis
Acarophagy: Mites as Food for Larger Animals
Eating Armoured Mites
Vertebrates That Eat Mites
Poison Frogs and Cleptotoxins
Body Size Patterns
Contentsxii Sensitivity and Diversity: Soil Mites as Environmental Indicators
Mites and Earthworms
7 Acari Underwater, or, Why Did Mites Take the Plunge?
Taxonomic Distribution of Secondarily Aquatic Arthropods
Repeated Invasions of Water

Number of Invasions into Different Aquatic Habitats
Temporary Freshwater Bodies
Standing Fresh Water
Running Fresh Water
Interstitial Fresh Water
Brackish Water
Marine Intertidal Zone
Marine Subtidal Zone (Including Abyssal)
(Pre)Adaptations to Subaquatic Life
Gas Exchange
Sperm Transfer
Predation: The Correlation Between Foul Taste and Bright Colour
Sensitivity and Diversity: Water Mites as Environmental Indicators
Standing Versus Running Water
Organic Pollution
8 Mites on Plants
Mites on Plants: Where Do They Come From?
Plant Parasites
Rust, Gall and Erinose Mites: Eriophyoidea
Earth Mites: Penthaleidae and Its Kin
Contentsxiii Spider Mites and Their Kin
Duckweeed and Water Hyacinth Mites
Fruit and Fig Mites
Venereal Diseases of Plants
Hunting on Leaves
Predatory Prostigmata
Foliar Mesostigmata
Development and Reproduction of Phytoseiid Mites
Feeding Biology of Phytoseiid Mites
Mites and Leaf Domatia
Structure and Distribution of Leaf Domatia
What Lives in Leaf Domatia?
Domatia as a Constitutive Plant Defence
What’s in It for the Mites?
Arboreal Scavengers and Fungivores
Scavenging on Leaves
Moss and Lichen Mites
Fungal Sporocarps
Under Bark
Mites and Biological Control
Induced Resistance
Transgenic Mites
Biocontrol of Weeds
9 Animals as Habitats
Types of Ecological Interactions
Evolutionary Pathways Between Interactions
Life with Invertebrates
Taxonomic Survey of Associates
Phoresy and Dispersal
Parasitism and Parasitoidism
Life with Vertebrates
Mammals and Their Homes
Mites on, in and Around Birds
Fish, Amphibians, Reptiles and the Mystery of Mite Pockets

Effects of Parasitic Mites on Their Hosts
Differential Host Susceptibility to Parasitism
The Evil That Mites Do: Adverse Effects of Acarine Symbionts
Parasitic Mites and Mate Choice by Hosts
Contentsxiv Mite–Host Coevolution: Any Evidence?
Coevolution by Mutual Adaptation
10 Mites That Cause and Transmit Disease
Critical Concepts and Terminology
Mite-Caused Diseases
The Human Itch Mite: A Life in the Skin
Demented Dermanyssoidea: Biting Mites of Birds, Rodents, and Whatever Else Is Nearby
Perverse Prostigmata: Whirligigs, Straw Itch, and Walking Dandruff
Mite- and Tick-Borne Diseases
Trombiculoidea (Chiggers): Scrub Typhus
Ixodoidea (Ticks)
Diseases That Mites Do Not Cause
Mystery Bites
Delusions of Mite-Bites
11 Mites and Biological Diversity
Mites and Microhabitats
Mites and Complementarity
Size and Biodiversity
Host Specifi city, Size and Diversity
12 Mites as Models
Theoretical and Applied Population Ecology
Moss Islands
Transgenic Releases
The Evolution of Host Specifi city and Virulence
Sexual Selection and Diversifi cation
Sex-Ratio Control and the Devolution of Sex
Pushing the Limits of Physiology and Morphology
Selection at More Than One Level