Términos relacionados

40 resultados encontrados para: TEMA: Modelos de simulación
  • «
  • 1 de 4
  • »
1.
- Capítulo de libro con arbitraje
*Solicítelo con su bibliotecario/a
Modeling hydrological regimes with the Soil and Water Assessment Tool (swat) for integrated watershed and coastal zone management: from systematic review to scientific debate
Escamilla Rivera, Verenice Isabel (autora) ; Cortina Villar, Héctor Sergio (autor) (1960-) ; Honey Rosés, Jordi (autor) ;
Disponible en línea
Contenido en: Vulnerabilidad de las zonas costeras mexicanas ante el cambio climático / Alfonso V. Botello, Susana Villanueva, Jorge Gutiérrez y José Luis Rojas Galaviz (eds.) Distrito Federal, México : Universidad Autónoma Juárez de Tabasco : Universidad Nacional Autónoma de México. Instituto de Ciencias del Mar y Limnología : Universidad Autónoma de Campeche. Instituto de Ecología, Pesquerías y Oceanografía del Golfo de México, 2017 páginas 117-132 ISBN:978-607-606-416-0
Bibliotecas: Campeche , Villahermosa
Cerrar
SIBE Campeche
58827-10 (Disponible)
Disponibles para prestamo: 1
Cerrar
SIBE Villahermosa
58827-20 (Disponible)
Disponibles para prestamo: 1
Nota: Solicítelo con su bibliotecario/a
Resumen en español

El conocimiento cuantitativo de las alteraciones en los regímenes hidrológicos es esencial para prepararse para el cambio climático, las inundaciones, la sequía y otros cambios inducidos por los asentamientos humanos en el ciclo del agua. La herramienta de evaluación de suelos y aguas (swat, por sus siglas en inglés) permite la modelación de cuencas hidrográficas para caracterizar el régimen hidrológico existente y para modelar los cambios futuros. Sin embargo, el modelado de cuencas hidrográficas requiere de muchos datos, diversos y heterogéneos, además de importantes recursos computacionales y de almacenamiento. Los objetivos de este estudio son proporcionar una visión general de los esfuerzos utilizando SWAT para cuantificar las alteraciones en los regímenes hidrológicos y determinar la capacidad del modelo en la simulación de las cuencas hidrográficas y su relación con la zona costera a través de una revisión sistemática en la literatura de SWAT.

Resumen en inglés

Quantitative knowledge about the alterations in hydrologic regimes is essential in order to prepare for climate change, flooding, drought, and other human-induced changes to the water cycle. The Soil and Water Assessment Tool (swat) allows the watershed-modeling tool to characterize the existing hydrological regimen and to model future changes. However, watershed modeling requires large, diverse and heterogeneous data in addition to important computational and storage resources. The objectives of this study are to provide an overview of efforts using swat to quantify alterations in hydrologic regimes, to ascertain the model’s capacity in the simulation of watershed and their relationship with the coastal zone through a systematic review in swat’s literature.


2.
Libro
*En proceso técnico. Solicítelo con el bibliotecario(a) de SIBE-San Cristóbal
Análisis y modelación de patrones y procesos de cambio / Jean Francois Mas (compilador)
Francois Mas, Jean (comp.) ;
Ciudad de México, México :: Morelia, Michoacán, México : Universidad Nacional Autónoma de México :: Centro de Investigaciones en Geografía Ambiental , c2017
Bibliotecas: San Cristóbal
Cerrar
SIBE San Cristóbal
41099-20 (Disponible)
Disponibles para prestamo: 1
Nota: En proceso técnico. Solicítelo con el bibliotecario(a) de SIBE-San Cristóbal

3.
Libro
Simulation of ecological and environmental models / Miguel F. Acevedo
Acevedo, Miguel F. ;
Boca Raton, FL : CRC Press :: Taylor & Francis Group , c2013
Clasificación: 574.5 / A23
Bibliotecas: San Cristóbal
Cerrar
SIBE San Cristóbal
ECO010018487 (Disponible)
Disponibles para prestamo: 1
Resumen en: Inglés |
Resumen en inglés

Given the importance of interdisciplinary work in sustainability, Simulation of Ecological and Environmental Models introduces the theory and practice of modeling and simulation as applied in a variety of disciplines that deal with earth systems, the environment, ecology, and human–nature interactions. Based on the author’s many years of teaching graduate and undergraduate students in the United States, Spain, and Latin America, the textbook shows how to implement simulations and analyze the results using an open-source software platform. Learn How to Use a Broad Range of Environmental Models. The textbook is organized into three parts to allow greater flexibility using the material in various countries and types of curricula. The first part provides a tutorial-style mathematical review and a gentle introduction to the basics of R software. The second part explains the fundamentals of modeling methodology through one-dimensional models. After a review of matrix algebra, the third part progresses to multidimensional models, focusing on structured populations, communities, and ecosystems. The final chapters show how simple models are hooked together to generate more comprehensive models. Build from Fundamental Concepts to Problem Solving. Each chapter starts with conceptual and theoretical material to give a firm foundation in how the methods work. Examples and exercises illustrate the applications and demonstrate how to go from concepts to problem solving. Hands-on computer sessions let students grasp the practical implications and learn by doing. Throughout, the computer examples and exercises use seem, an open-source R package developed by the author, which lets students quickly produce simulations and explore the effects of changing conditions in the model.

This practical book is a comprehensive, unified presentation of ecological and environmental models. It describes the mathematical fundamentals to analyze models and the methodology to simulate them, with a focus on understanding environmental change—a key element of environmental management and problem solving.


4.
Artículo
*En hemeroteca, SIBE-San Cristóbal
Application of a simulation model for assessing integration of smallholder shifting cultivation and sheep production in Yucatán, Mexico
Parsons, David (coaut.) ; Nicholson, Charles F. (coaut.) ; Blake, Robert W. (coaut.) ; Ketterings, Quirine M. (coaut.) ; Ramírez Avilés, Luis (coaut.) ; Cherney, Jerome H. (coaut.) ; Fox, Danny G. (coaut.) ;
Contenido en: Agricultural Systems Vol. 104, no. 1 (January 2011), p. 13-19 ISSN: 0308-521X
Bibliotecas: San Cristóbal
Cerrar
SIBE San Cristóbal
50438-10 (Disponible)
Disponibles para prestamo: 1
Nota: En hemeroteca, SIBE-San Cristóbal
PDF
Resumen en: Inglés |
Resumen en inglés

Simulation models are effective tools to examine interactions between livestock, cropping systems, households, and natural resources. Our study objective was to use an integrated livestock and crop model to assess the outcomes from selected suites of management decisions observed in smallholder sheep-cropping systems of Yucatán, Mexico. The scenarios contrasted specialized systems versus mixed farming, and evaluated the outcomes of increased crop-livestock integration. Mixed enterprise scenarios involving sheep provided more income than specialized enterprises, and capitalized on a lower price of on-farm maize grain, efficient utilization of surplus labor, and availability of common land. Labor and management income was greatest for the unintegrated and partially integrated crop and livestock scenarios. It was more profitable for producers to sell excess grain and maize stover, and use common land to feed the livestock, suggesting that increased integration does not always result in improved outcomes. The results are consistent with a system not yet pushed to the point where integration is inevitable. For all sets of scenarios, the model structure was able to accommodate subtle management differences to produce appropriate biophysical, labor, and economic outcomes. We conclude there is potential to use similar model development methods to describe other crop-livestock systems, thus providing tools for learning, scenario analysis, and impact assessment.


5.
Artículo
*En hemeroteca, SIBE-San Cristóbal
Development and evaluation of an integrated simulation model for assessing smallholder crop-livestock production in Yucatan, Mexico
Parsons, David ; Nicholson, Charles F. (coaut.) ; Blake, Robert W. (coaut.) ; Ketterings, Quirine M. (coaut.) ; Ramírez Avilés, Luis (coaut.) ; Fox, Danny G. (coaut.) ; Tedeschi, Luis O. (coaut.) ; Cherney, Jerome H. (coaut.) ;
Contenido en: Agricultural Systems Vol. 104, no. 1 (January 2011), p. 1-12 ISSN: 0308-521X
Bibliotecas: San Cristóbal
Cerrar
SIBE San Cristóbal
50437-10 (Disponible)
Disponibles para prestamo: 1
Nota: En hemeroteca, SIBE-San Cristóbal
PDF
Resumen en: Inglés |
Resumen en inglés

Mixed farming systems constitute a large proportion of agricultural production in the tropics, and provide multiple benefits for the world's poor. However, our understanding of the functioning of these systems is limited. Modeling offers the best approach to quantify outcomes from many interacting causal variables in these systems. The objective of this study was to develop an integrated crop-livestock model to assess biophysical and economic consequences of farming practices exhibited in sheep systems of Yucatán state, Mexico. A Vensim(TM) dynamic stock-flow feedback model was developed to integrate scientific and practical knowledge of management, flock dynamics, sheep production, partitioning of nutrients, labor, and economic components. The model accesses sheep production and manure quantity and quality data generated using the Small Ruminant Nutrition System (SRNS), and interfaces on a daily basis with an Agricultural Production Systems Simulator (APSIM) model that simulates weather, crop, and soil dynamics. Model evaluation indicated that the integrated model adequately represents the complex interactions that occur between farmers, crops, and livestock.


6.
Tesis - Maestría
Un modelo para la restauración de la diversidad de árboles en bosques de pino-encino de Chiapas / María Magdalena Alcázar Gómez
Alcázar Gómez, María Magdalena ; González Espinosa, Mario (tutor) (1950-) ; Ramírez Marcial, Neptalí (asesor) (1963-) ; García Barrios, Luis Enrique (asesor) ;
San Cristóbal de Las Casas, Chiapas, México : El Colegio de la Frontera Sur , 2011
Clasificación: TE/634.9809775 / A3
Cerrar
SIBE Campeche
ECO040004395 (Disponible)
Disponibles para prestamo: 1
Cerrar
SIBE Chetumal
ECO030007415 (Disponible)
Disponibles para prestamo: 1
Cerrar
SIBE San Cristóbal
ECO010014767 (Disponible)
Disponibles para prestamo: 1
Cerrar
SIBE Tapachula
ECO020011728 (Disponible)
Disponibles para prestamo: 1
Cerrar
SIBE Villahermosa
ECO050004660 (Disponible)
Disponibles para prestamo: 1
PDF
Índice | Resumen en: Español |
Resumen en español

Prácticas actuales de extracción de madera y leña en Los Altos de Chiapas, México, han inducido un incremento de las especies de pino con severos impactos en la biodiversidad y la estructura del bosque que comprometen la integridad funcional del bosque y la capacidad de proveer servicios ecosistémicos. Las consecuencias de dichas prácticas domésticas locales de uso del bosque fueron exploradas con el modelo SYMFOR. Los tratamientos simulados fueron: (1) extracción de madera de pinos (DAP ≥ 40 cm, cada 0, 5 o 10 años), (2) extracción de leña de especies de encino y latifoliadas (DAP ≥ 10 cm, extracción anual o no extracción) y (3) reintroducción de juveniles de pinos, encinos o sin reintroducción. El análisis factorial ANOVA sobre los valores de importancia relativa de cuatro grupos ecológicos de especies de árboles (pinos, encinos, latifoliadas intolerantes a la sombra y latifoliadas tolerantes a la sombra) considerando la dominancia inicial de pinos como covariable, indicó que después de 200 años de simulación fueron escasos los efectos individuales de los factores, de manera que sus interacciones dobles fueron frecuentemente las que explicaron las proporciones de los grupos de árboles. La dinámica simulada de los bosques estudiados muestra que el grupo de los pinos puede con el tiempo ser reducido o removido del sistema, en condiciones naturales y bajo aprovechamiento forestal local, a menos que continúe la extracción de leña de encinos y latifoliadas. La recuperación y el mantenimiento de la diversidad forestal original puede lograrse si hay propágulos disponibles de especies de encinos y latifoliadas tolerantes a la sombra.

Índice

Resumen
Introducción
Objetivo
Materiales y Métodos
1. Los bosques de pino encino en Los Altos de Chiapas
A. Inventarios con localización espacial individual en Rancho Merced-Bazom
B. Caracterización de inventarios en Los Altos de Chiapas
C. Grupos ecológicos
D. Gradiente de diversidad ecológica
2. Simulación de escenarios hipotéticos
A. Modelo ecológico
B. Prácticas de aprovechamiento forestal tradicional y de reintroducción de especies nativas
C. Detalles de la simulación y procesamiento de la información
Resultados
1. Los bosques de pino-encino en Los Altos de Chiapas
A. Parcelas con localización espacial individual en Rancho Merced-Bazom
B. Caracterización de inventarios en Los Altos de Chiapas
C. Grupos ecológicos
D. Gradiente de diversidad ecológica
2. Simulación de escenarios
A. Extracción de madera
B. Extracción de leña
C. Reintroducción de árboles de pino y encino
D. Extracción de madera con extracción de leña
E. Extracción de leña con reintroducción de pino o encinos
F. Extracción de madera con extracción de leña con reintroducción de pinos o encinos
G. Efecto de los factores evaluados en el cociente dominancia relativa/abundancia relativa
Discusión
1. Componentes metodológicos
2. Escenarios de simulación
A. Parcelas con dominancia inicial de pinos
B. Parcelas con dominancia inicial de latifoliadas
Conclusiones
Literatura citada
Apéndice 1
Apéndice 2


7.
Libro
Advanced ocean modelling: using open-source software / by Jochen Kämpf
Kämpf, Jochen ;
Berlin : Springer-Verlag , c2010
Clasificación: 551.460285 / K3
Bibliotecas: Chetumal
Cerrar
SIBE Chetumal
ECO030007867 (Disponible)
Disponibles para prestamo: 1
Índice | Resumen en: Inglés |
Resumen en inglés

"This book introduces the reader to advanced methods used in the computer-based modelling of fluid processes. This includes nonhydrostatic processes such as breaking internal waves and density-driven convection, but the model code is also used to simulate an El-Niño event! The book contains 25 practical exercises, using freely available Open-Source software suites, which are widely used by the scientific community. In this book, the art of hydrodynamic modelling is made available and transparent to a wider readership. An attractive byproduct of the book is that results are animations rather than still images. Model codes and animation scripts for all exercises are supplied on a website. The reader can adopt model codes for own independent studies."

Índice

1 Introduction
1.1 Fundamental Physical Laws
1.1.1 Cartesian Coordinates
1.1.2 The Navier-Stokes Equations
1.1.3 Boundary Fluxes
1.1.4 The Hydrostatic Approximation
1.1.5 The Stability Frequency
1.2 Numerical Methods
1.2.1 Finite Differences
1.2.2 Requirements for a Finite-Difference Model
1.3 Modelling with FORTRAN 95
1.3.1 Writing and Compiling Codes
1.3.2 Modular Source Codes
1.4 Visualisation with SciLab
1.4.1 Writing SciLab Scripts
1.4.2 GIF Animations
1.5 Organisation of Work
1.6 Download of Computer Codes
2 1D Models of Ekman Layers
2.1 Useful Background Knowledge
2.1.1 Inertial Oscillations
2.1.2 Semi-implicit Treatment of the Coriolis Force
2.2 The Surface Ekman Layer
2.2.1 Boundary-Layer Equations
2.2.2 Scaling: The Temporal Rossby Number
2.2.3 Scaling: The Ekman Number
2.2.4 Solutions of the Boundary-Layer Equations
2.2.5 Finite-Difference Equations
2.2.6 Formulation of Diffusion Terms
2.2.7 Stability Criterion for Diffusion Terms
2.3 Exercise 1: The Surface Ekman Layer
2.3.1 Task Description
2.3.2 Results
2.3.3 Explanation of the Ekman-Layer Structure
2.3.4 Additional Exercises for the Reader
2.4 The Bottom Ekman Layer
2.4.1 Boundary-Layer Equations
2.5 Exercise 2: The Bottom Ekman Layer
2.5.1 Task Description
2.5.2 Results
2.5.3 Additional Exercises for the Reader
3 Basics of Nonhydrostatic Modelling
3.1 Level Models
3.2 2D Vertical-Slice Modelling
3.2.1 Configuration
3.2.2 The Arakawa C-Grid
3.3 Surface Gravity Waves
3.3.1 The Governing Equations
3.3.2 The Dispersion Relation
3.3.3 Orbital Motions of Water Particles and Wave Pressure
3.4 Nonhydrostatic Solver
3.4.1 Splitting Pressure into Parts
3.4.2 Starting as Simple as Possible
3.4.3 Finite-Difference Scheme
3.4.4 The S.O.R. Method
3.4.5 Boundary Conditions for Variable Bathymetry
3.4.6 Stability Criterion
3.5 Exercise 3: Short Surface Gravity Waves
3.5.1 Aim

3.5.2 Task Description
3.5.3 Results
3.5.4 Additional Exercise for the Reader
3.5.5 Implementation of Variable Bottom Topography
3.5.6 Results
3.6 Inclusion of Variable Density
3.6.1 The Governing Equations
3.6.2 Discretisation of the Advection Terms
3.6.3 Stability Criterion for the Advection Equation
3.6.4 Implementation of Density Diffusion
3.6.5 Required Modifications of the Code
3.7 Exercise 4: Density-Driven Flows
3.7.1 Aim
3.7.2 Task Description
3.7.3 Theory
3.7.4 Results
3.7.5 Can Reduced-Gravity Plumes Jump?
3.7.6 Additional Exercise for the Reader
3.7.7 The Rigid-Lid Approximation
3.8 Internal Waves
3.8.1 Theory
3.8.2 Normal Wave Modes
3.9 Exercise 5: Internal Waves
3.9.1 Aim
3.9.2 Task Description
3.9.3 Results
3.9.4 Additional Exercise for the Reader
3.10 Mechanical Turbulence
3.10.1 Kelvin-Helmholtz Instability
3.10.2 Instability of a Stratified Shear Flow
3.11 Exercise 6: Kelvin-Helmholtz Instability
3.11.1 Aim
3.11.2 Task Description
3.11.3 Cyclic Boundary Conditions
3.11.4 Results
3.11.5 Additional Exercise for the Reader
3.12 Lee Waves and the Froude Number
3.12.1 The Hydraulic Jump
3.13 Exercise 7: Lee Waves
3.13.1 Task Description
3.13.2 Results: Continuous Density Stratification
3.13.3 Results: Two-Layer Stratification
3.13.4 Additional Exercise for the Reader
3.14 Oceanic Convection
3.14.1 Background
3.14.2 Free Convection
3.14.3 The Flux-Rayleigh Number
3.14.4 Aspect Ratio of Convection Cells
3.14.5 Convective Mixed-Layer Deepening
3.15 Exercise 8: Free Convection
3.15.1 Aim
3.15.2 Task Description
3.15.3 A Trick to Avoid Substantial Round-off Errors
3.15.4 Inclusion of Momentum Diffusion and Bottom Friction
3.15.5 Results
3.15.6 Additional Exercise for the Reader
3.16 Exercise 9: Convective Entrainment
3.16.1 How It Works
3.16.2 Entrainment Velocity
3.16.3 Task Description
3.16.4 Results

3.16.5 Additional Exercises for the Reader
3.17 Exercise 10: Slope Convection near the Shore
3.17.1 Background
3.17.2 Implementation of Bottom Friction on a Sloping Terrain
3.17.3 Task Description
3.17.4 Results
3.17.5 Additional Exercise for the Reader
3.18 Double Diffusion
3.18.1 Background
3.18.2 Double-Diffusive Instability
3.18.3 Double-Diffusive Layering
3.18.4 The Gradient Ratio and the Turner Angle
3.19 Exercise 11: Double-Diffusive Instability
3.19.1 Aim
3.19.2 Task Description
3.19.3 Results
3.20 Exercise 12: Double-Diffusive Layering
3.20.1 Aim
3.20.2 Task Description
3.20.3 Results
3.20.4 Additional Exercises for the Reader
3.21 Tilted Coordinate Systems
3.21.1 The Governing Equations
3.22 Exercise 13: Stratified Flows on a Slope
3.22.1 Aim
3.22.2 Task Description
3.22.3 Results
3.22.4 Additional Exercise for the Reader
3.23 Estuaries
3.23.1 Definition
3.23.2 Classification of Estuaries According to Origin
3.23.3 The Dynamics of Positive Estuaries
3.23.4 Brief Overview of Tides
3.23.5 Dynamic Theory of Tides
3.23.6 Tides in Estuaries
3.23.7 Tidal Patterns
3.23.8 Classification of Estuaries According to Stratification and Circulation
3.23.9 Transport Timescales in Estuaries
3.24 Exercise 14: Positive Estuaries
3.24.1 Aim
3.24.2 Task Description
3.24.3 Implementation of Variable Channel Width
3.24.4 Advanced Turbulence Closure
3.24.5 Results
3.24.6 Additional Exercises for the Reader
3.25 Exercise 15: Inverse Estuaries
3.25.1 Aim
3.25.2 Task Description
3.25.3 Results
3.25.4 Additional Exercise for the Reader
4 2.5 D Vertical Slice Modelling
4.1 The Basis
4.1.1 Adding Another Half Dimension
4.1.2 The Geostrophic Balance
4.1.3 Scaling
4.1.4 Conservation of Potential Vorticity
4.1.5 Geostrophic Adjustment
4.1.6 The 2.5d Shallow-Water Model
4.1.7 Implementation of the Coriolis Force

4.1.8 Potential Problems
4.2 Exercise 16: Geostrophic Adjustment
4.2.1 Aim
4.2.2 Task Description
4.2.3 Results
4.2.4 Additional Exercise for the Reader
4.3 Exercise 17: Tidal-Mixing Fronts
4.3.1 Background
4.3.2 Task Description
4.3.3 Results
4.3.4 Additional Study
4.3.5 Results and Discussion
4.3.6 Additional Exercises for the Reader
4.4 Coastal Upwelling
4.4.1 Background
4.4.2 How Does It Work?
4.4.3 Partial and Full Upwelling
4.4.4 The Upwelling Index
4.5 Exercise 18: Coastal Upwelling and Downwelling
4.5.1 Aim
4.5.2 Task Description
4.5.3 Advanced Turbulence Closure
4.5.4 Results: Upwelling Scenario
4.5.5 Additional Exercise for the Reader
4.5.6 Results: Downwelling Scenario
4.5.7 Additional Exercise for the Reader
4.6 Exercise 19: Ekman Pumping
4.6.1 Theoretical Background
4.6.2 Aim
4.6.3 Task Description
4.6.4 Results: Scenario 1
4.6.5 Results: Scenario 2
4.6.6 Results: Scenario 3
4.6.7 Additional Exercises for the Reader
5 3D Level Modelling
5.1 The Basic Equations
5.1.1 The Basics
5.1.2 Conservation of Momentum
5.1.3 Conservation of Volume
5.1.4 Evolution of the Density Field
5.2 Numerical Treatment
5.2.1 The 3d Arakawa C-grid
5.2.2 Treatment of the Advection Terms
5.2.3 The Nonhydrostatic Solver of the Momentum Equations
5.2.4 Stability Criteria
5.3 Exercise 20: Geostrophic Adjustment in 3D
5.3.1 Aim
5.3.2 Task Description
5.3.3 Results
5.3.4 Additional Exercise for the Reader
5.4 Exercise 21: Eddy Formation in a Strait
5.4.1 Background
5.4.2 Aim
5.4.3 Task Description
5.4.4 Creation of Variable Bathymetry
5.4.5 Results
5.4.6 Bathymetry Creation
5.4.7 Additional Exercises for the Reader
5.5 Exercise 22: Exchange Flow Through a Strait
5.5.1 Aim
5.5.2 Mediterranean Seas
5.5.3 Task Description
5.5.4 Results
5.5.5 Additional Exercise for the Reader

5.6 Exercise 23: Coastal Upwelling in 3D
5.6.1 Aim
5.6.2 Task Description
5.6.3 Results
5.6.4 Additional Exercise for the Reader
5.6.5 Time-Splitting Methods
5.7 The Thermohaline Circulation
5.7.1 The Abyssal Circulation
5.7.2 The Stommel-Arons Model
5.8 Exercise 24: The Abyssal Circulation
5.8.1 Aim
5.8.2 Task Description
5.8.3 Results
5.8.4 Additional Exercise for the Reader
5.8.5 Improved Float Tracking
5.9 The Equatorial Barrier
5.9.1 Inertial Oscillations About the Equator
5.9.2 Variation to Exercise 24
5.9.3 Results
5.9.4 Additional Exercise for the Reader
5.10 Equatorial Waves
5.10.1 Background
5.10.2 Equatorial Kelvin Waves
5.10.3 Other Equatorially Trapped Waves
5.11 The El-Niño Southern Oscillation
5.11.1 Background
5.12 Exercise 25: Simulation of an El-Niño Event
5.12.1 Aim
5.12.2 Task Description
5.12.3 The Smagorinsky Turbulence Closure Scheme
5.12.4 Warning
5.12.5 Results
5.12.6 Additional Exercises for the Reader
5.13 Advanced Lateral Boundary Conditions
5.13.1 Background
5.13.2 Consistency
5.13.3 Inflow Conditions
5.13.4 Outflow Conditions
5.13.5 Zero-Gradient Conditions
5.13.6 Radiation Conditions
5.13.7 Sponge Layers and Low-Pass Grid Filters
5.14 Final Remark
5.15 Technical Information
Bibliography
List of Exercises
Index


8.
- Artículo con arbitraje
Resumen en: Inglés |
Resumen en inglés

Functional agrodiversity can be useful and even essential for, i.e., the long-term sustainability of agriculture. However, still many aspects of this concept are not well understood. The interplay between species in diverse agro-ecosystems is based on processes as, i.e., competition, facilitation, and predator–prey relations. The net-effect of these processes on crop growth is not static and can change over time as the relative density of species change. The equilibrium state of a diverse agro-ecosystem might be far from optimum or even unproductive. This makes agrodiveristy a concept which is not easily grasped nor obtained or maintained. We believe that an agent-based model can facilitate learning on the topic of functional agrodiversity. In this paper, we present the agent-based simulation model, Agrodiversity v.2, developed in Netlogo 3.1.5. The model simulates a virtual diverse agro-ecosystem with four ecological agents. The user is challenged to explore ecological parameters and design a productive sustainable system. The model's “simplest playing level” shows that a proper balance between the co-existing species is necessary so that their ecological interactions allow the multi-species system to become self-organized and persist over time. It demonstrates the transient nature of profitable functional agrodiversity. Our analysis on the effects of using Agrodiversity v.2 on actual learning shows that the learning took place. Students increased the quality of their answers to paper-based individual questions on the topic from 29% during passive/conceptual teaching to 86% after the simulation session. On average students stated to have learnt 55% of their current knowledge through the workshop of which 76% was learnt by using the simulation.


9.
Artículo
An educational simulation tool to address some challenges for sustaining functional agrodiversity in agro-ecosystems
Speelman, E. N. ; García Barrios, Luis Enrique (coaut.) ;
Clasificación: AR/333.9534 / S7
Contenido en: Ecological Modelling Vol. 221, no. 6 (March 2010), p. 911-918
Bibliotecas: San Cristóbal
Cerrar
SIBE San Cristóbal
ECO010000786 (Disponible)
Disponibles para prestamo: 1
Resumen en: Inglés |
Resumen en inglés

Functional agrodiversity can be useful and even essential for, i.e., the long-term sustainability of agriculture. However, still many aspects of this concept are not well understood. The interplay between species in diverse agro-ecosystems is based on processes as, i.e., competition, facilitation, and predator–prey relations. The net-effect of these processes on crop growth is not static and can change over time as the relative density of species change. The equilibrium state of a diverse agro-ecosystem might be far from optimum or even unproductive. This makes agrodiveristy a concept which is not easily grasped nor obtained or maintained. We believe that an agent-based model can facilitate learning on the topic of functional agrodiversity. In this paper, we present the agent-based simulation model, Agrodiversity v.2, developed in Netlogo 3.1.5.

The model simulates a virtual diverse agro-ecosystem with four ecological agents. The user is challenged to explore ecological parameters and design a productive sustainable system. The model’s “simplest playing level” shows that a proper balance between the co-existing species is necessary so that their ecological interactions allow the multi-species system to become self-organized and persist over time. It demonstrates the transient nature of profitable functional agrodiversity. Our analysis on the effects of using Agrodiversity v.2 on actual learning shows that the learning took place. Students increased the quality of their answers to paper-based individual questions on the topic from 29% during passive/conceptual teaching to 86% after the simulation session. On average students stated to have learnt 55% of their current knowledge through the workshop of which 76% was learnt by using the simulation.


10.
Libro
Manejo integrado de cuencas hidrológicas: delimitación de cuencas y modelos de simulación de balance de agua / J. Suárez Sánchez, H. Muñoz Nava, W. Ritter Ortiz, ... [et al.]
Suárez Sánchez, Juan ; Muñoz Nava, H. (coaut.) ; Ritter Ortiz, W. (coaut.) ; Orozco Flores, S. (coaut.) ; Jiménez López, J. (coaut.) ; Corona Vargas, M. C. (coaut.) ; Sánchez Torres E., G. (coaut.) ; Van Der Wal, Hans (coaut.) ; Treviño Trujillo, J. M. (coaut.) ;
México : Universidad Autónoma de Tlaxcala , 2009
Clasificación: EE/333.7316 / M3
Bibliotecas: Campeche , San Cristóbal , Tapachula
Cerrar
SIBE Campeche
ECO040006974 (Disponible)
Disponibles para prestamo: 1
Cerrar
SIBE San Cristóbal
ECO010015389 (Disponible) , ECO010015388 (Disponible)
Disponibles para prestamo: 2
Cerrar
SIBE Tapachula
ECO020011078 (Disponible)
Disponibles para prestamo: 1
Índice

Delimitación De Microcuencas Del Estado De Tlaxcala Empleando HEC-GeoHMS
Pre-procesa miento del terreno
Características y funcionalidad para el pre-procesamiento del terreno
II. WEAP® (Water Evaluation and Planning System)
Elaboración del modelo conceptual
Entrada de datos a las variables del modelo de simulación
Generación de escenarios
Visualización de resultados
III. Estudio De Caso: Modelo De Simulación De La Dinámica De Los Contaminantes Del Río Zahuapan, Tlaxcala
Simulación de la disponibilidad de agua
Simulación de la dinámica de la materia orgánica
IV. Consideraciones Generales Para el Manejo Integrado de Cuencas
Anexo. Obtención de Información Sobre Contaminantes del Rio Zahuapan, Tlaxcala