Términos relacionados

224 resultados encontrados para: AUTOR: De Jong, Bernardus Hendricus Jozeph
  • «
  • 1 de 23
  • »

Objetivos del PEACC
Marco Normativo
Metodología y Resultados:
Primera Parte: Inventario de Emisiones de Gases de Efecto Invernadero de Tabasco (INEEGEIT)
Segunda Parte: Vulnerabilidad
Evaluación de la Vulnerabilidad de los Estados del Sureste de México ante Lluvias Extremas Debidas a la Variabilidad y el Cambio Climático: Tabasco
Vulnerabilidad Física de la Zona Costera de Tabasco Ante la Problemática de Ascenso del Nivel del Mar Acelerado
Tercera Parte: Escenarios
Escenarios Climáticos
Escenarios de Emisiones
Escenarios de Vulnerabilidad Física de la Zona Costera de Tabasco Ante la Problemática de Ascenso del Nivel del Mar Acelerado
Cuarta Parte: Medidas de Mitigación y Adaptación Resultantes
Quinta Parte: Medidas de Mitigación y Adaptación Propuestas en Consulta Pública a Sectores Representativos
Conclusiones Generales

Índice | Resumen en: Inglés |
Resumen en inglés

This sourcebook provides a consensus perspective from the global community of earth observation and carbon experts on methodological issues relating to quantifying the greenhouse gas (GHG) impacts of implementing mitigation activities related to the forest land use in developing countries (REDD+). At current status of negotiation five forestrelated activities have been listed to be implemented as mitigation actions by developing countries, namely: reducing emissions from deforestation (which implies a land-use change) and reducing emissions from forest degradation, conservation of forest carbon stocks, sustainable management of forest, Enhancement of forest carbon stocks (all relating to carbon stock changes and GHG emissions within managed forest land use). The UNFCCC negotiations and related country submissions on REDD+ have advocated that methodologies and tools become available for estimating emissions and removals from deforestation and forest land management with an acceptable level of certainty. Based on the current status of negotiations and UNFCCC approved methodologies, the Sourcebook aims to provide additional explanation, clarification, and methodologies to support REDD+ early actions and readiness mechanisms for building national REDD+ monitoring systems. It compliments the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas Inventories and it is aimed at being fully consistent with this IPCC Guidelines and with the UNFCCC reporting guidelines on annual inventories (FCCC/SBSTA/2006/9). The book emphasizes the role of satellite remote sensing as an important tool for monitoring changes in forest cover, provides guidance on how to obtain credible estimates of forest carbon stocks and related changes, and provides clarification on the use of IPCC Guidelines for estimating and reporting GHG emissions and removals from forest lands.

The sourcebook is the outcome of an ad-hoc REDD+ working group of “Global Observation of Forest and Land Cover Dynamics” (GOFC-GOLD, www.fao.org/gtos/gofcgold/), a technical panel of the Global Terrestrial Observing System (GTOS). The working group has been active since the initiation of the UNFCCC REDD+ process in 2005, has organized REDD+ expert workshops, and has contributed to related UNFCCC/SBSTA side events and GTOS submissions. GOFC-GOLD provides an independent expert platform for international cooperation and communication to formulate scientific consensus and provide technical input to the discussions and for implementation activities. A number of international experts in remote sensing, carbon measurement and reporting under the UNFCCC have contributed to the development of this sourcebook. With political discussions and negotiations ongoing, the current document provides the starting point for defining an appropriate monitoring framework considering current technical capabilities to monitor gross GHG emissions from changes in forest cover by deforestation and forest land management. This sourcebook is a living document and further methods and technical details can be specified and added with evolving negotiations and science. Respective communities are invited to provide comments and feedback to evolve a more detailed and refined guidelines document in the future.


1 Introduction
1.1 Purpose and Scope of the Sourcebook
1.2 IPCC Context and Requirements
1.2.1 LULUCF in the UNFCCC and Kyoto Protocol
1.2.2 Definition of forests, deforestation and degradation
1.2.3 General method for estimating CO2 emissions and removals
1.2.4 Reference levels and benchmark forest area map
1.3 Clarifying REDD+ Elements Causing Forest Carbon Stock Change
1.4 Emerging Issues for REDD+ Implementation
1.5 Roadmap for the Sourcebook
2 Guidance on Methods
2.1 Monitoring Of Changes In Forest Area
2.1.1 Scope of chapter
2.1.2 Monitoring of changes of forest areas - deforestation and forestation
2.2 Monitoring of Change in Forest Land Remaining Forest Land
2.2.1 Direct approach to monitor selective logging
2.2.2 Indirect approach to monitor forest degradation
2.2.3 Key references for Section 2.2.
2.3 Estimation of Above Ground Carbon Stocks
2.3.1 Scope of chapter
2.3.2 Overview of carbon stocks, and issues related to C stocks
2.3.3 Which Tier should be used?
2.3.4 Stratification by carbon stocks
2.3.5 Estimation of carbon stocks of forests undergoing change
2.3.6 Estimation of soil carbon stocks
2.4 Methods for Estimating CO2 Emissions from Deforestation and Forest Degradation
2.4.1 Scope of chapter
2.4.2 Linkage to 2006 IPCC Guidelines
2.4.3 Organization of chapter
2.4.4 Fundamental carbon estimating issues
2.4.5 Estimation of emissions from deforestation
2.4.6 Estimation of emissions from forest degradation
2.5 Methods for Estimating GHG Emissions from Biomass Burning
2.5.1 Scope of chapter
2.5.2 Introduction
2.5.3 IPCC guidelines for estimating fire-related emission
2.5.4 Mapping fire from space
2.5.5 Using existing products
2.5.6 Case studies
2.5.7 Key references for Section 2.5.
2.6 Estimation of Uncertainties
2.6.1 Scope of chapter
2.6.2 General concepts
2.6.3 Quantification of uncertainties

2.6.4 Key references for Section 2.6.
2.7 Methods to Address Emerging Issues for REDD+ Implementation
2.7.1 Identifying drivers of deforestation and degradation with remote sensing
2.7.2 Safeguards to ensure protection of biodiversity
2.7.3 Safeguards to ensure rights of forest dwellers
2.7.4 Monitoring displacement of emissions and permanence at a national scale
2.7.5 Linking national and sub-national monitoring
2.8 Guidance on Reporting
2.8.1 Scope of chapter
2.8.2 Overview of reporting principles and procedures
2.8.3 What are the major challenges for developing countries?
2.8.4 The conservativeness approach
2.8.5 Key references for chapter 2.8.
2.9 Status of Evolving Technologies
2.9.1 Scope of chapter
2.9.2 Role of LIDAR observations
2.9.3 Forest monitoring using Synthetic Aperture Radar (SAR) observations
2.9.4 Integration of satellite and in situ data for biomass mapping
2.9.5 Targeted airborne surveys to support carbon stock estimations – a case study
2.9.6 Modeling and forecasting forest-cover change
2.9.7 Cloud-computing and web-based approaches to support national forest monitoring
2.9.8 Summary and recommendations
2.9.9 Key references for Section 2.9.
3 Practical Examples for Data Collection
3.1 Methods Used By Annex-1 Countries for National Lulucf Inventories
3.1.1 Scope of chapter
3.1.2 Methods for estimating forest area changes
3.1.3 Methods for estimating carbon stock changes
3.1.4 National carbon budget models
3.1.5 Estimation of uncertainties
3.1.6 Key References for section 3.1.
3.2 Overview of the Existing Forest Area Changes Monitoring Systems
3.2.1 Scope of chapter
3.2.2 National case studies
3.2.3 Key references for Section

3.3 From National Forest Inventory to National Forest GHG Inventories
3.3.1 Scope of chapter
3.3.2 Introduction on forest inventories in tropical countries
3.3.3 Indian national forest inventory (NFI)
3.3.4 GHG emissions in Mexico from land-use change and forestry
3.3.5 Key references for Section 3.3.
3.4 Community Forest Monitoring
3.4.1 Scope of chapter: rationale for community based inventories
3.4.2 How communities can make their own forest inventories
3.4.3 Additional data requirements
3.4.4 Reliability and accuracy
3.4.5 Costs
3.4.6 Options for independent assessment of locally collected data
3.4.7 Emerging information needs and technologies for locally collected data
4 Country Capacity Building
4.1 Scope of Chapter
4.2 Building National Carbon Monitoring Systems for REDD: Elements And Capacities
4.2.1 Key elements and required capacities - overview
4.2.2 Key elements and required capacities - GHG inventories
4.2.3 Key elements and required capacities - current monitoring capacities
4.3 Capacity Gaps and Cost Implications
4.3.1 Importance of monitoring for establishing a national REDD+ infrastructure
4.3.2 Planning and design
4.3.3 Institutional capacities
4.3.4 Cost factors for monitoring change in forest area
4.3.5 Cost factors for monitoring change in carbon stocks
4.3.6 Spatial data infrastructure, access and reporting procedures
4.4 Linking Monitoring and Policy Development
4.5 Key References for Section 4

- Tesis
Servicios ambientales: captura de carbono en sistemas de café bajo sombra en Chiapas, México / Carlos Mario Aguirre Davila
Aguirre Davila, Carlos Mario ; De Jong, Bernardus Hendricus Jozeph (director) ; Krishnamurthy, Laksmi Reddiar (asesor) ; Vergara, Miguel Ángel (asesor) ; Soto Pinto, Lorena (asesora) (1958-) ; Romo Lozano, José Luis (asesor) ;
Texcoco, Estado de México, México : Universidad Autónoma Chapingo. Departamento de Suelos. Centro de Agroforestería para el Desarrollo Sostenible , 2006
Clasificación: TE/363.738747097 / A3
Bibliotecas: San Cristóbal , Villahermosa
SIBE San Cristóbal
ECO010015132 (Disponible)
Disponibles para prestamo: 1
SIBE Villahermosa
ECO050003403 (Disponible)
Disponibles para prestamo: 1
Resumen en: Español |
Resumen en español

En México, los SAF de café bajo sombra son sistemas tradicionales de producción implementados por un sin número de comunidades campesinas indígenas de escasos recursos económicos. De acuerdo con Moguel y Toledo (1999) estos sistemas ocupan una área aproximada de 420.000 ha y presentan diferentes niveles de manejo agroecológico, vegetación y complejidad estructural, lo que permite la oferta y generación de múltiples productos (madera, leña, frutos) y servicios (regulación hidrológica, captura de carbono, conservación de suelo y conservación de biodiversidad) a las comunidades. Estudios realizados identifican cinco sistemas de producción de café con diferentes grados de estructuración, desde los más complejos como el rusticano y policultivo tradicional hasta los más simples como el policultivo tradicional, el monocultivo de café bajo sombra y el café bajo sol (Moguel y Toledo 1999).

Capítulo de libro
La investigación agroforestal en los Altos de Chiapas, México: su importancia en la producción de ovinos
Alemán Santillán, Trinidad ; Nahed Toral, José (coaut.) ; Parra Vázquez, Manuel Roberto (coaut.) ; Soto Pinto, Lorena (coaut.) (1958-) ; De Jong, Bernardus Hendricus Jozeph (coaut.) ; Villafuerte Zea, Luis Eugenio (coaut.) ;
Clasificación: S/338.1763 / A4
Contenido en: II seminario centroamericano y del Caribe sobre agroforestería con rumiantes menores San José, Costa Rica: Instituto Nacional de Aprendizaje, 1993
Bibliotecas: San Cristóbal
SIBE San Cristóbal
SER000473 (Disponible)
Disponibles para prestamo: 1

- Capítulo de libro con arbitraje
*Solicítelo con su bibliotecario/a
Soil organic carbon stocks and soil respiration in tropical secondary forests in southern Mexico
Aryal, Deb Raj (autor) ; De Jong, Bernardus Hendricus Jozeph (autor) ; Mendoza Vega, Jorge (autor) ; Ochoa Gaona, Susana (autora) ; Esparza Olguín, Ligia Guadalupe (autora) ;
Disponible en línea
Contenido en: Global soil security / Damien J. Field, Cristine L. S. Morgan, Alex B. McBratney, editors Cham, Switzerland, Zug : Springer International Publishing Switzerland, 2017 p. 153-165 ISBN:978-3-319-43394-3
Nota: Solicítelo con su bibliotecario/a
Resumen en: Inglés |
Resumen en inglés

The soil CO2 efflux is recognized as one of the largest fluxes in the global carbon cycle, and small changes in the magnitude of soil respiration could have a large consequence on the concentration of CO2 in the atmosphere. In this study, we analyzed the soil organic carbon (SOC) stocks and CO2 efflux from soil respiration in a tropical secondary forest succession grown after abandonment of swidden agriculture in Southern Mexico. The study was conducted in a chronosequence of semi-evergreen tropical secondary and primary forests in the southern part of Yucatan Peninsula, Mexico. We collected soil samples (up to 30 cm depth) from 32 carbon monitoring plots and analyzed these for physical and chemical soil properties. Soil respiration measurements were carried out by using PP systems EGM-4 (an infrared gas analyzer). Analysis of variance (ANOVA), correlation, and regression was performed to test differences between forest age groups as the independent variable and soil respiration, organic as well as inorganic carbon in soil. Contrary to the hypothesis, SOC in the mineral soil horizon did not increase with forest age. Soil CO2 efflux did not correlate to soil organic carbon, it rather correlated to carbonate concentration in the soil. Higher CO2 efflux in carbonate rich soils can be explained probably by the faster decomposition but the slower ultimate mixing of organic matter in mineral soils of carbonate origin. However, it needs further investigation in separating soil CO2 efflux into autotrophic, heterotrophic, and abiotic fluxes to better understand the role of carbonate soils in atmospheric CO2 exchange.

Capítulo de libro
*Solicítelo con su bibliotecario/a
Seasonal and successional patterns of litterfall in a semi-evergreen tropical forest of Calakmul, Campeche
Aryal, Deb Raj (autor) ; De Jong, Bernardus Hendricus Jozeph (autor) ; Ochoa Gaona, Susana (autora) ; Mendoza Vega, Jorge (autor) ; Esparza Olguín, Ligia Guadalupe (autor) ;
Disponible en línea
Contenido en: Estado actual del conocimiento del ciclo del carbono y sus interacciones en México: síntesis a 2014 / Fernando Paz Pellat y Julio C. Wong González, editores Texcoco, Estado de México, México : Programa Mexicano del Carbono : Instituto Politécnico Nacional, Centro de Investigación y Estudios Avanzados, Unidad Mérida : Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, 2015 páginas 23-28 ISBN:978-607-96490-2-9
Bibliotecas: Villahermosa
SIBE Villahermosa
57621-20 (Disponible)
Disponibles para prestamo: 1
Nota: Solicítelo con su bibliotecario/a
Resumen en español

El objetivo de este estudio fue analizar el efecto de la edad de sucesión y la temporalidad en la producción de hojarasca en un bosque tropical sub-perennifolia. Se estableció 16 parcelas de muestreo; en los doseles de conocida historia del uso del suelo; en cuatro etapas de sucesión en la selva subperennifolia de Calakmul. La hojarasca se recogió quincenalmente desde octubre 2012 a septiembre 2013, con 12 canastas de hojarasca circulares de 0.5 m2 en cada parcela. Las muestras se secaron en horno a 70º C durante tres días y se separaron en hojas, ramas y partes reproductivas. Se analizó el contenido de carbono utilizando Schimadzu analizador automático. Mayor caída de hojarasca se observó en los meses de febrero y marzo, los meses secos del año. Producción de hojarasca fue más alta en acahuales de 20 años en comparación con selvas primarias y acahuales jóvenes. Hojas contribuye más de 80% de la hojarasca total anual. Los acahuales se comportan de manera diferente a las selvas primarias en función de la estacionalidad de la caída de hojarasca. Alta correlación negativa entre la producción de hojarasca y la intensidad del uso anterior del suelo indica que las capacidades de transferencia de carbono de los acahuales se reducen con mayor frecuencia y duración de la agricultura de roza tumba y quema antes del abandono de la tierra.

Resumen en inglés

The aim of this study was to analyze the effect of successional age and season on litterfall in a semievergreen tropical forest. We established 16 sampling plots; on stands of known land use history; at four phases of succession in semi-evergreen forests of Calakmul. Litterfall was collected fortnightly from October 2012 to September 2013 with 12 circular litter traps of 0.5 m2 on each plot. The samples were oven dried at 70o C for three days and weighted separately in leaves, twigs and reproductive parts. Carbon content was analyzed using Schimadzu automatic analyzer. Highest litterfall was observed in the months of February and March. Litter fall was found higher in secondary forests of 20 years compared to primary forests and younger secondary forests. Leaf litter contributed more than 80% of total annual litterfall. Primary forests behave differently to secondary forests in terms of seasonality of litterfall. High negative correlation between litterfall and previous land use intensity indicated that carbon transfer capacities of the secondary forests were reduced by higher frequency and duration of slash and burn agriculture prior to land abandonment.

- Artículo con arbitraje
Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico
Aryal, Deb Raj (autor) ; De Jong, Bernardus Hendricus Jozeph (autor) ; Ochoa Gaona, Susana (autora) ; Mendoza Vega, Jorge (autor) ; Esparza Olguín, Ligia Guadalupe (autora) ;
Disponible en línea
Contenido en: Nutrient Cycling in Agroecosystems Vol. 103, no. 1 (September 2015), p. 45-60 ISSN: 1573-0867
Resumen en: Inglés |
Resumen en inglés

Forest conversion to agriculture and grassland has been widespread in south-eastern Mexico. The productivity, functioning and carbon dynamics of secondary forests growing after abandonment of agricultural fields are expected to differ from those of primary forests. This study analysed whether forest age and seasonal variations affect the amount and temporal distribution of litterfall and associated nutrient transfer. Litterfall was measured across a chronosequence of semi-evergreen tropical forest in Calakmul, Yucatan peninsula, Mexico, and an index was created to evaluate the effect of land use intensity on litterfall collected in 16 stands from October 2012 to September 2014. Total litterfall ranged from 5.2 ± 0.6 to 7.1 ± 0.3 Mg ha−1 year−1 and peaked in secondary forest aged 10–20 years. Leaves contributed 84–91 % of total litterfall. The associated transfer of carbon ranged from 2.3 ± 0.3 to 3.2 ± 0.1 Mg ha−1 year−1 and of nitrogen from 62 ± 7 to 84 ± 4 kg ha−1 year−1. Carbon and nutrient accumulation in the organic horizon (Oa) increased significantly with forest age. However, carbon in mineral soil (down to 0.30 m depth) did not increase over time. Peaks in monthly litterfall coincided with the dry season, with higher peaks in a year with lower rainfall in the dry season. Peaks were also higher in secondary forests than in primary forests, due to changes in species composition. Higher land use intensity reduced carbon and nutrient transfer through litter in regenerating secondary forests. Longer-term research is required to analyse the climate sensitivity of litter dynamics in these tropical forest frontiers.

- Artículo con arbitraje
Carbon stocks and changes in tropical secondary forests of southern Mexico
Aryal, Deb Raj ; De Jong, Bernardus Hendricus Jozeph (coaut.) ; Ochoa Gaona, Susana (coaut.) ; Esparza Olguín, Ligia Guadalupe (coaut.) ; Mendoza Vega, Jorge (coaut.) ;
Contenido en: Agriculture, Ecosystems & Environment Vol. 195 (October 2014), p. 220–230 ISSN: 0167-8809
Resumen en: Inglés |
Resumen en inglés

The role of tropical secondary forests in carbon accumulation has been widely acknowledged, but the rates of changes in carbon stocks still remain uncertain. The aim of this study was to analyze the changes in carbon pool sizes and accumulation rates associated with growth, recruitment and mortality of trees at different ages of forest succession in semi-evergreen tropical forests and relate these to the age of the secondary vegetation and prior land use intensity. The study was carried out in a chronosequence of secondary and mature forests around Calakmul Biosphere Reserve in southern Yucatan Peninsula, Mexico. Permanent monitoring plots were established and measured in 2011 and 2012 to account all carbon stocks and changes due to tree increments, establishment of new trees and tree mortality in different age classes of secondary forests. We found that carbon stocks in living tree biomass increased rapidly in the early stages and decreased in the older secondary forests. The annual carbon dynamics of trees were higher in younger secondary forest compared to older forests due to higher tree growth and recruitment. Growth functions predict that the secondary forests recover live aboveground biomass carbon stocks to pre-disturbance levels (99.56 Mg C ha−1) at the age of about 125 years or more, while the basal area (33.2 m2 ha−1) regains this level at the age of about 85 years.

The longer carbon recovery time can be explained by the fact that mature forests are dominated by hardwood species whereas secondary forests are composed of softwood species and that species composition turnover during succession is relatively slow. Secondary forests of 35 years look similar to mature forests in terms of basal area, but this is located in large number of small and medium sized trees, whereas in mature forests, most of the basal area is in trees of >20 cm diameter. In addition, the intensity of slash and burn agriculture can negatively alter the velocity of carbon accumulation. These findings have important implications for national forest carbon monitoring systems, greenhouse gas emission inventories and regional level REDD+ strategies.

Tesis - Doctorado
Dinámica de carbono en diferentes etapas sucesionales de la selva mediana sub-perennifolia en Calakmul, Campeche / Deb Raj Aryal
Aryal, Deb Raj ; De Jong, Bernardus Hendricus Jozeph (tutor) ; Ochoa Gaona, Susana (asesora) ; Mendoza Vega, Jorge (asesor) ; Esparza Olguín, Ligia Guadalupe (asesora) ;
Lerma, Campeche, México : El Colegio de la Frontera Sur , 2014
Clasificación: TE/333.751609726 / A7
SIBE Campeche
ECO040005541 (Disponible)
Disponibles para prestamo: 1
SIBE Chetumal
ECO030008214 (Disponible)
Disponibles para prestamo: 1
SIBE San Cristóbal
ECO010017674 (Disponible)
Disponibles para prestamo: 1
SIBE Tapachula
ECO020013212 (Disponible)
Disponibles para prestamo: 1
SIBE Villahermosa
ECO050005761 (Disponible)
Disponibles para prestamo: 1

Capítulo I: Introducción general
Carbono y sistema climática
Carbono y ecosistemas forestales
Reservorios y flujos de carbono en ecosistemas forestales
Sucesión forestal y dinámica de carbono
Planteamiento del problema
Estructura de tesis
Literaturas citadas
Capítulo II: Carbon stocks and changes in tropical secondary forests of southern Mexico
Capítulo III: Successional and seasonal variation of litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico
Capítulo IV: Carbon flux from branch fall and wood decomposition in a tropical forest succession
Capítulo V: Carbon balance of tropical secondary and primary forests in southern Mexico
Capítulo VI: Conclusión general
Síntesis de los resultados
Novedades y contribución a la ciencia
Implicación al desarrollo sustentable y políticas públicas
Literaturas citadas

Resumen en: Inglés |
Resumen en inglés

We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1- km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N–23.4 S) of 375 Pg dry mass, 9–18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15–21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha 1 vs. 21 and 28 Mg ha 1 for the input maps). The fusion method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets.