Términos relacionados

224 resultados encontrados para: AUTOR: De Jong, Bernardus Hendricus Jozeph
11.
Tesis - Maestría
*En proceso técnico. Solicítelo con el bibliotecario de SIBE-Campeche
Dinámica sucesional a través de una cronosecuencia de la selva mediana subperennifolia de la Reserva de la Biósfera de Calakmul, Campeche / María Alejandra Haas Ek
Haas Ek, María Alejandra ; De Jong, Bernardus Hendricus Jozeph (Director) ; González Valdivia, Noel Antonio (Co-director) ; Ochoa Gaona, Susana (Asesora) ; Aryal, Deb Raj (Asesor) ;
Lerma, Campeche, México : El Colegio de la Frontera Sur , 2018
Clasificación: TE/574.524097264 / H3
Bibliotecas: Campeche
Cerrar
SIBE Campeche
ECO040006897 (Disponible)
Disponibles para prestamo: 1
Nota: En proceso técnico. Solicítelo con el bibliotecario de SIBE-Campeche
PDF PDF
Índice | Resumen en: Español |
Resumen en español

Las selvas tropicales albergan la mayor biodiversidad biológica en el mundo, asimismo proveen bienes y servicios biológicos, sociales y medioambientales. Actualmente, estas comunidades vegetales se encuentran modificadas en cuanto a su estructura y composición, debido a las actividades agrícolas, ganaderas y forestales que se han ido realizando a través del tiempo. El cambio de uso de suelo ha provocado la formación de vegetación secundaria en diferentes fases de barbecho, permitiendo la recuperación de la vegetación leñosa. El objetivo de este estudio fue comparar la composición de especies en parcelas con mismas edades sucesionales; así como identificar y cuantificar las especies arbóreas con capacidad de rebrote entre etapas sucesionales. Para ello, se establecieron parcelas permanentes en la zona de amortiguamiento de la Reserva de la Biósfera de Calakmul, Campeche, México, que van desde la vegetación secundaria joven (4, 10, 16, 20, 26 y 40 años de abandono) hasta la selva madura (+de 115 años sin perturbación aparente). En cada sitio se delimitó una parcela de 20m x 50m (1 000m2), con una parcela interior de 400m². En cada una de las parcelas, se tomaron datos a cada individuo, como: nombre de la especie, DAP (diámetro a la altura del pecho, 1.30 m), altura, número de individuos con y sin rebrotes. De acuerdo a los resultados sobre la composición de especies en parcelas con misma edad sucesional, las selvas maduras de la región de Calakmul son heterogéneas entre sitios lo que significa que las selvas secundarias son diferentes entre sí. Con respecto a la capacidad de rebrote de las especies arbóreas y con los datos de campo, se registraron 13 972 individuos (32% con rebrote y 68% sin rebrote) y 168 especies (79% con rebrote y 21 % sin rebrote), donde el porcentaje de individuos con rebrote va disminuyendo conforme avanza la edad de la sucesión.

Ahora bien, con la revisión de literatura y del informante clave, se encontró que todas las especies tienen capacidad de rebrotar con excepción de Bourreria mollis. Por lo tanto, se puede afirmar que más del 99% de los árboles de la región de Calakmul pueden regenerarse a partir de tocones, lo cual tiene influencia en el rápido proceso de recuperación sucesional de la selva después de la roza-tumba y quema. Por lo que es importante tomar en cuenta la capacidad de rebrote en el desarrollo de programas de gestión, conservación y restauración de las selvas tropicales.

Índice

DEDICATORIA i AGRADECIMIENTOS ii Resumen general 1 CAPÍTULO I 2 Introducción 2 Fundamentos sobre la sucesión ecológica 4 Teorías, modelos y mecanismos sobre la sucesión secundaria 4 Fases de la sucesión secundaria 6 Métodos de estudio de la dinámica de la vegetación 6 Estudios de dinámica sucesional en zonas tropicales 7 Estudios de dinámica sucesional en el Sur-Sureste mexicano 9 Fuentes de regeneración de las selvas tropicales 11 Justificación 12 Preguntas de investigación 13 Objetivo General 13 Objetivos Particulares 13 Hipótesis 14 Estructura de la tesis 14 CAPÍTULO II 15 Composición de especies de la selva mediana subperennifolia de la Reserva de la Biósfera de Calakmul, Campeche, México 15 CAPÍTULO III 32 El rebrote arbóreo en la regeneración del bosque tropical: caso de estudio en Calakmul, Campeche, México 32 CAPÍTULO IV 62 Conclusiones generales 62 Literatura citada 64 Anexos 70


12.
- Artículo con arbitraje
Legume abundance along successional and rainfall gradients in Neotropical forests
Gei, Maga ; Rozendaal, Danaë M. A. (coaut.) ; Poorter, Lourens (coaut.) ; Bongers, Frans (coaut.) ; Sprent, Janet I. (coaut.) ; Garner, Mira D. (coaut.) ; Aide, T. Mitchell (coaut.) ; Andrade, José Luis (coaut.) ; Balvanera, Patricia (coaut.) ; Becknell, Justin M. (coaut.) ; Brancalion, Pedro H. S. (coaut.) ; Cabral, George A. L. (coaut.) ; Gomes César, Ricardo (coaut.) ; Chazdon, Robin L. (coaut.) ; Cole, Rebecca J. (coaut.) ; Dalla Colletta, Gabriel (coaut.) ; De Jong, Bernardus Hendricus Jozeph (coaut.) ; Denslow, Julie S. (coaut.) ; Dent, Daisy H. (coaut.) ; DeWalt, Saara J. (coaut.) ; Dupuy, Juan Manuel (coaut.) ; Durán, Sandra M. (coaut.) ; do Espírito Santo, Mário Marcos (coaut.) ; Fernandes, G. Wilson (coaut.) ; Ferreira Nunes, Yule Roberta (coaut.) ; Finegan, Bryan (coaut.) ; Granda Moser, Vanessa (coaut.) ; Hall, Jefferson S. (coaut.) ; Hernández Stefanoni, José Luis (coaut.) ; Junqueira, André B. (coaut.) ; Kennard, Deborah (coaut.) ; Lebrija Trejos, Edwin (coaut.) ; Letcher, Susan G. (coaut.) ; Lohbeck, Madelon (coaut.) ; Marín Spiotta, Erika (coaut.) ; Martínez Ramos, Miguel (coaut.) ; Meave, Jorge A. (coaut.) ; Menge, Duncan N. L. (coaut.) ; Mora, Francisco (coaut.) ; Muñoz, Rodrigo (coaut.) ; Muscarella, Robert (coaut.) ; Ochoa Gaona, Susana (coaut.) ; Orihuela Belmonte, Dolores Edith (coaut.) ; Ostertag, Rebecca (coaut.) ; Peña Claros, Marielos (coaut.) ; Pérez García, Eduardo A. (coaut.) ; Piotto, Daniel (coaut.) ; Reich, Peter B. (coaut.) ; Reyes García, Casandra (coaut.) ; Rodríguez Velázquez, Jorge (coaut.) ; Romero Pérez, Isabel Eunice (coaut.) ; Sanaphre-Villanueva, Lucía (coaut.) ; Sánchez Azofeifa, Arturo (coaut.) ; Schwartz, Naomi B. (coaut.) ; Silva de Almeida, Arlete (coaut.) ; Almeida Cortez, Jarcilene Silva (coaut.) ; Silver, Whendee L. (coaut.) ; de Souza Moreno, Vanessa (coaut.) ; Sullivan, Benjamin W. (coaut.) ; Swenson, Nathan G. (coaut.) ; Uriarte, María (coaut.) ; van Breugel, Michiel (coaut.) ; Van Der Wal, Hans (coaut.) ; Magalhães Veloso, Maria Das Dores (coaut.) ; Vester, Hans F. M. (coaut.) ; Guimarães Vieira, Ima Célia (coaut.) ; Zimmerman, Jess K. (coaut.) ; Powers, Jennifer S. (caout.) ;
Contenido en: Nature Ecology and Evolution Vol. 2, no. 7 (Jun. 2018), p. 1104–1111 ISSN: 2397-334X
PDF
Resumen en: Inglés |
Resumen en inglés

The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.


13.
- Artículo con arbitraje
PDF PDF
Resumen en: Inglés |
Resumen en inglés

The applicability of optical and synthetic aperture radar (SAR) data for land cover classification to support REDD+ (Reducing Emissions from Deforestation and Forest Degradation) MRV (measuring, reporting and verification) services was tested on a tropical to sub-tropical test site. The 100 km by 100 km test site was situated in the State of Chiapas in Mexico. Land cover classifications were computed using RapidEye and Landsat TM optical satellite images and ALOS PALSAR L-band and Envisat ASAR C-band images. Identical sample plot data from Kompsat-2 imagery of one-metre spatial resolution were used for the accuracy assessment. The overall accuracy for forest and non-forest classification varied between 95% for the RapidEye classification and 74% for the Envisat ASAR classification. For more detailed land cover classification, the accuracies varied between 89% and 70%, respectively. A combination of Landsat TM and ALOS PALSAR data sets provided only 1% improvement in the overall accuracy. The biases were small in most classifications, varying from practically zero for the Landsat TM based classification to a 7% overestimation of forest area in the Envisat ASAR classification. Considering the pros and cons of the data types, we recommend optical data of 10 m spatial resolution as the primary data source for REDD MRV purposes. The results with L-band SAR data were nearly as accurate as the optical data but considering the present maturity of the imaging systems and image analysis methods, the L-band SAR is recommended as a secondary data source. The C-band SAR clearly has poorer potential than the L-band but it is applicable in stratification for a statistical sampling when other image types are unavailable.


14.
- Artículo con arbitraje
PDF
Resumen en: Inglés |
Resumen en inglés

Trends in structural and chemical leaf traits along a chronosequence of semi-evergreen tropical forest and their correlation with litter production and decomposition and associated carbon (C) and nitrogen (N) fluxes were assessed. Leaves of 15 dominant species in each plot were collected to measure leaf area, specific leaf area (SLA), C and N concentration and C:N ratio. Litterfall was measured and litter decomposition experiments were set up in 16 experimental plots in a chronosequence of secondary and mature forest. All five leaf traits combined discriminated the secondary forests from mature forest. SLA, N and C:N were significantly correlated to litter decomposition rates. Litter decompositionwas significantly slower inmature forest compared with secondary forests. TheNconcentration of litter was lowest during the dry season, when litterfall was highest. N concentration in fresh leaves was higher than in litter, indicating thatNis re-absorbed before leaf abscission. Leaf dynamics and associated nutrient cycling differ significantly between secondary forests andmature forest. Ecosystem-level leaf structural and chemical traits are good predictors of the stage of the forest and explain well the differences in decomposition rates between secondary and primary forests.


15.
Libro
Árboles de Calakmul / Susana Ochoa‐Gaona, Hugo Ruíz González, Demetrio Alvarez Montejo, Gabriel Chan Coba, y Bernardus H.J. de Jong
Ochoa Gaona, Susana (coaut.) ; Ruíz González, Hugo (coaut.) ; Álvarez Montejo, Demetrio (coaut.) ; Chan Coba, Gabriel Jesús (coaut.) ; De Jong, Bernardus Hendricus Jozeph (coaut.) ;
San Cristóbal de Las Casas, Chiapas, México : Colegio de la Frontera Sur , 2018
Clasificación: EE/577.3097264 / A7
Cerrar
SIBE Campeche
ECO040007013 (Disponible) , ECO040006906 (Disponible) , ECO040006905 (Disponible)
Disponibles para prestamo: 3
Cerrar
SIBE Chetumal
ECO030008759 (Disponible)
Disponibles para prestamo: 1
Cerrar
SIBE San Cristóbal
ECO010019680 (Disponible)
Disponibles para prestamo: 1
Cerrar
SIBE Tapachula
ECO020013821 (Disponible) , ECO020013816 (Disponible)
Disponibles para prestamo: 2
PDF
Índice | Resumen en: Español |
Resumen en español

En este libro se incluyen las especies nativas más comunes y características de la región de la Reserva de la Biosfera de Calakmul. Muchas de ellas tienen una amplia distribución en bosques tropicales de la Península de Yucatán y de otras regiones del trópico mexicano, por lo cual, resulta de gran valor para conocer la parte arbolada de éste recurso forestal. Se describen 179 especies de árboles, que representan casi el 50% de especies arbóreas reportadas para el área. Las descripciones se basan principalmente en características vegetativas, tomando en cuenta la forma biológica, la corteza y las hojas, dándole un carácter dendrológico a este trabajo. Para mayor ayuda en las primeras páginas se presenta una clave para la identificación de las especies, la cual se basa en características morfológicas observables a simple vista.

Índice

Presentación
Introducción
Zona de Estudio
Terminología Utilizada
Hábito: Forma de Vida
Tipo de Corteza
Hojas
Flor
Inflorescencia
Otros Términos Utilizados
Clave Para la Identificación de Especies
Grupo I. Palmas
Grupo II. Hojas Simples, Alternas, Enteras
Grupo III. Hojas Simples, Alternas, no Enteras
Grupo IV. Hojas Simples, Opuestas, Enteras
Grupo V. Hojas Simples, Opuestas, no Enteras
Grupo VI. Hojas Compuestas Bifoliadas, Trifoliadas o Digitadas
Grupo VII. Hojas Compuestas Bipinnadas
Grupo VIII. Hojas Compuestas Pinnadas
Descripción De Las Especies
Acanthaceae
Aphelandra scabra (Vahl) Sm.
Bravaisia berlanderiana (Nees) T.F. Daniel
Anacardiaceae
Astronium graveolens Jarq.
Metopium brownei (Jacq.) Urb.
Spondias mombin L.
Annonaceae
Annona reticulata L.
Mosannona depressa (Baill.) Chatrou
Apocynaceae
Aspidosperma desmanthum Benth. ex Müll.Arg.
Aspidosperma megalocarpon Müll.Arg.
Cameraria latifolia L.
Cascabela gaumeri (Hemsl.) Lippold
Plumeria obtusa L.
Tabernaemontana donnell-smithii Rose ex J.D.Sm.
Thevetia ahouai (L.) A.DC.
Araliaceae
Dendropanax arboreus (L.) Decne. & Planch.
Arecaceae
Acoelorrhaphe wrightii (Griseb. & H. Wendl.) H. Wendl. ex Becc.
Chamaedorea oblongata Mart.
Chamaedorea seifrizii Burret
Cryosophila stauracantha (Heynh.) R.J.Evans
Desmoncus chinantlensis Liebm. ex Mart.
Gaussia maya (O.F. Cook) H.J. Quero R. &. Read
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.
Sabal mexicana Mart.
Bignoniaceae
Crescentia cujete L.
Handroanthus chrysanthus (Jacq.) S.O.Grose
Parmentiera millspaughiana L.O.Williams
Tabebuia rosea (Bertol.) Bertero ex A. DC.
Bixaceae
Cochlospermum vitifolium (Willd.) Spreng.
Boraginaceae
Cordia alliodora (Ruiz & Pav.) Oken
Cordia dodecandra A.DC.
Ehretia tinifolia L.
Burseraceae
Bursera simaruba (L.) Sarg.

Protium copal (Schltdl. y Cham.) Engl.
Canellaceae
Canella winterana (L.) Gaertn.
CANNABACEAE
Celtis trinervia Lam.
Trema micrantha (L.) Blume
Caricaceae
Carica papaya L.
Celastraceae
Semialarium mexicanum (Miers) Mennega
Chrysobalanaceae
Chrysobalanus icaco L.
Clusiaceae
Calophyllum brasiliense Cambess.
Combretaceae
Bucida buceras L.
Terminalia amazonia (J. F. Gmel.) Exell
Ebenaceae
Diospyros anisandra S. F. Blake
Diospyros bumelioides Standl
Diospyros campechiana Lundell
Diospyros yucatanensis Lundell
Erythroxylaceae
Erythroxylum guatemalense Lundell
Erythroxylum rotundifolium Lunan
Euphorbiaceae
Cnidoscolus aconitifolius (Mill.) I.M.Johnst.
Croton arboreus Millsp.
Croton glabellus L.
Croton icche Lundell
Croton oerstedianus Müll.Arg.
Gymnanthes lucida Sw.
Jatropha gaumeri Greenm.
Ricinus communis L.
Sapium glandulosum (L.) Morong
Sebastiania adenophora Pax y K. Hoffm.
Lamiaceae
Vitex gaumeri Greenm
Lauraceae
Licaria coriacea (Lundell) Kosterm
Licaria peckii (I.M.Johnst.) Kosterm.
Nectandra salicifolia (Kunth) Ness
Leguminosae
Acacia cornigera (L.) Willd.
Acacia dolichostachya S.F.Blake.
Acacia gaumeri S.F.Blake
Ateleia gummifera (DC.) D.Dietr.
Bauhinia divaricata L.
Bauhinia erythrocalyx Wunderlin
Caesalpinia gaumeri Greenm.
Caesalpinia mollis (Kunth) Spreng
Caesalpinia yucatanensis Greenm.
Calliandra belizensis (Standl.) Standl.
Calliandra houstoniana (Mill.) Standl.
Chloroleucon mangense (Jacq.) Britton & Rose
Diphysa carthagenensis Jacq
Erythrina standleyana Krukoff
Gliricidia sepium (Jacq.) Walp.
Haematoxylum brasiletto H.Karst.
Haematoxylum campechianum L.
Havardia albicans (Kunth) Britton & Rose
Leucaena leucocephala (Lam.) de Wit
Lonchocarpus castilloi Standl.
Lonchocarpus guatemalensis Benth.
Lonchocarpus rugosus Benth.
Lonchocarpus yucatanensis Pittier

Lysiloma latisiliquum (L.) Benth.
Mimosa bahamensis Benth.
Piscidia piscipula (L.) Sarg.
Pithecellobium lanceolatum (Willd.) Benth.
Platymiscium yucatanum Standl.
Senna racemosa (Mill.) H.S.Irwin & Barneby
Senegalia polyphylla (DC.) Britton
Swartzia cubensis (Britton &Wilson) Standl.
Malpighiaceae
Bunchosia lindeniana A. Juss.
Byrsonima bucidifolia Standl.
Byrsonima crassifolia (L.) Kunth
Malpighia glabra L.
Malvaceae
Ceiba pentandra (L.) Gaertn.
Ceiba schottii Britten & Baker f.
Guazuma ulmifolia Lam.
Hampea trilobata Standl.
Helicteres baruensis Jacq.
Luehea speciosa Willd.
Malvaviscus arboreus Cav.
Pseudobombax ellipticum (Kunth) Dugand
Meliaceae
Cedrela odorata L.
Swietenia macrophylla King
Trichilia glabra L.
Trichilia minutiflora Standl.
Trichilia pallida Sw.
Menispermaceae
Hyperbaena winzerlingii Standl.
Moraceae
Brosimum alicastrum Sw.
Maclura tinctoria (L.) D.Don ex Steud.
Pseudolmedia spuria (Sw.) Griseb.
Trophis racemosa (L.) Urb.
Muntingiaceae
Muntingia calabura L.
Myrtaceae
Eugenia capuli (Schltdl. & Cham.) Hook. & Arn.
Eugenia ibarrae Lundell
Eugenia winzerlingii Standl.
Myrcianthes fragrans (Sw.) McVaugh
Myrciaria floribunda (H.West ex Willd.) O.Berg
Pimenta dioica (L.) Merr.
Nyctaginaceae
Neea choriophylla Standl.
Ochnaceae
Ouratea lucens (Kunth) Engl.
Opiliaceae
Agonandra obtusifolia Standl.
Pentaphylacaceae
Ternstroemia tepezapote Cham. & Schltdl
Phyllanthaceae
Astrocasia tremula (Griseb.) G.L. Webster
Picramniaceae
Alvaradoa amorphoides Liebm.
Piperaceae
Piper amalago L.
Piper yucatanense C.DC.
Polygonaceae
Coccoloba acapulcensis Standl.
Coccoloba barbadensis Jacq.
Coccoloba cozumelensis Hemsl.
Coccoloba reflexiflora Standl.
Coccoloba spicata Lundell
Gymnopodium floribundum Rolfe
Neomillspaughia emarginata (H. Gross) S.F. Blake

Primulaceae
Bonellia flammea (Millsp. ex Mez) B. Ståhl & Källersjö
Parathesis cubana (A.DC.) Molinet y M. Gómez
Putranjivaceae
Drypetes lateriflora (Sw.) Krug & Urb.
Rhamnaceae
Krugiodendron ferreum (Vahl) Urb.
Rhamnus humboldtiana Willd. ex Schult.
Rubiaceae
Alseis yucatanensis Standl.
Cosmocalyx spectabilis Standl.
Guettarda combsii Urb.
Guettarda gaumeri Standl.
Hamelia patens Jacq.
Machaonia lindeniana Baill
Randia aculeata L.
Randia longiloba Hemsl.
Simira salvadorensis (Standl.) Steyerm.
Rutaceae
Amyris elemifera L.
Casimiroa tetrameria Millsp.
Esenbeckia berlandieri Baill.
Salicaceae
Casearia emarginata C. Wright ex Griseb.
Laetia thamnia L.
Samyda yucatanensis Standl.
Xylosma flexuosa (Kunth) Hemsl.
Zuelania guidonia (Sw.) Britton & Millsp.
Sapindaceae
Allophylus cominia (L.) Sw.
Cupania belizensis Standl.
Exothea diphylla (Standl.) Lundell
Matayba oppositifolia (A.Rich.) Britton
Melicoccus oliviformis Kunth
Talisia floresii Standl.
Thouinia paucidentata Radlk.
Sapotaceae
Chrysophyllum mexicanum Brandegge
Manilkara zapota (L.) P.Royen
Pouteria amygdalina (Standl.) Baehni
Pouteria campechiana (Kunth) Baehni
Pouteria reticulata (Engl.) Emya
Sideroxylon floribundum Griseb.
Sideroxylon obtusifolium (Roem. & Schult.) T.D.Penn.
Sideroxylon salicifolium (L.) Lam.
Simaroubaceae
Simarouba amara Aubl.
Urticaceae
Cecropia peltata L.
Verbenaceae
Rehdera trinervis (S.F.Blake) Moldenke
Stachytarpheta frantzii Pol.
Zygophyllaceae
Guaiacum sanctum L.
Bibliografía
Índice de Especies
Lista de Nombres Comunes
Semblanza de los Autores


Resumen en: Inglés |
Resumen en inglés

There is an increasing need for approaches to determine reference emission levels and implement policies to address the objectives of Reducing Emissions from Deforestation and Forest Degradation, plus improving forest management, carbon stock enhancement and conservation (REDD+). Important aspects of approaching emissions reductions include coordination and sharing of technology, data, protocols and experiences within and among countries to maximize resources and apply knowledge to build robust monitoring, reporting and veri fi cation (MRV) systems. We propose that enhancing the multiple facets of interoperability could facilitate implementation of REDD+ programs and actions. For this case, interoperability is a collective effort with the ultimate goal of sharing and using information to produce knowledge and apply knowledge gained, by removing conceptual, technological, organizational and cultural barriers. These efforts must come from various actors and institutions, including government ministries/agencies, scientific community, landowners, civil society groups and businesses. Here, we review the case of Mexico as an example of evolving interoperability in developing countries, and highlight challenges and opportunities for implementation of REDD+. Country-specific actions toward a higher degree of interoperability can be complex, expensive and even risky. These efforts provide leadership opportunities and will facilitate science–policy integration for implementation of REDD+, particularly in developing counties.


Resumen en: Inglés |
Resumen en inglés

Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar measurements. Two sets of models are generated, the first relating ground estimates of AGB to airborne laser scanning (ALS) measurements and the second set relating ALS estimates of AGB (generated using the first model set) to GLAS measurements. GLAS then, is used as a sampling tool within a hybrid estimation framework to generate stratum-, state-, and national-level AGB estimates. A two-phase variance estimator is employed to quantify GLAS sampling variability and, additively, ALS-GLAS model variability in this current, three-phase (ground-ALS-space lidar) study. The model variance component characterizes the variability of the regression coefficients used to predict ALS-based estimates of biomass as a function of GLAS measurements. Three different types of predictive models are considered in CONUS to determine which produced biomass totals closest to ground-based national forest inventory estimates - (1) linear (LIN), (2) linear-no-intercept (LNI), and (3) log-linear. For CONUS at the national level, the GLAS LNI model estimate (23.95 ± 0.45 Gt AGB), agreed most closely with the US national forest inventory ground estimate, 24.17 ± 0.06 Gt, i.e., within 1%. The national biomass total based on linear ground-ALS and ALS-GLAS models (25.87 ± 0.49 Gt) overestimated the national ground-based estimate by 7.5%.

The comparable log-linear model result (63.29 ± 1.36 Gt) overestimated ground results by 261%. All three national biomass GLAS estimates, LIN, LNI, and log-linear, are based on 241,718 pulses collected on 230 orbits. The US national forest inventory (ground) estimates are based on 119,414 ground plots. At the US state level, the average absolute value of the deviation of LNI GLAS estimates from the comparable ground estimate of total biomass was 18.8% (range: Oregon, − 40.8% to North Dakota, 128.6%). Log-linear models produced gross overestimates in the continental US, i.e., > 2.6x, and the use of this model to predict regional biomass using GLAS data in temperate, western hemisphere forests is not appropriate. The best model form, LNI, is used to produce biomass estimates in Mexico. The average biomass density in Mexican forests is 53.10 ± 0.88 t/ha, and the total biomass for the country, given a total forest area of 688,096 km², is 3.65 ± 0.06 Gt. In Mexico, our GLAS biomass total underestimated a 2005 FAO estimate (4.152 Gt) by 12% and overestimated a 2007/8 radar study's figure (3.06 Gt) by 19%.


18.
- Capítulo de libro con arbitraje
*Solicítelo con su bibliotecario/a
Soil organic carbon stocks and soil respiration in tropical secondary forests in southern Mexico
Aryal, Deb Raj (autor) ; De Jong, Bernardus Hendricus Jozeph (autor) ; Mendoza Vega, Jorge (autor) ; Ochoa Gaona, Susana (autora) ; Esparza Olguín, Ligia Guadalupe (autora) ;
Disponible en línea
Contenido en: Global soil security / Damien J. Field, Cristine L. S. Morgan, Alex B. McBratney, editors Cham, Switzerland, Zug : Springer International Publishing Switzerland, 2017 p. 153-165 ISBN:978-3-319-43394-3
Nota: Solicítelo con su bibliotecario/a
Resumen en: Inglés |
Resumen en inglés

The soil CO2 efflux is recognized as one of the largest fluxes in the global carbon cycle, and small changes in the magnitude of soil respiration could have a large consequence on the concentration of CO2 in the atmosphere. In this study, we analyzed the soil organic carbon (SOC) stocks and CO2 efflux from soil respiration in a tropical secondary forest succession grown after abandonment of swidden agriculture in Southern Mexico. The study was conducted in a chronosequence of semi-evergreen tropical secondary and primary forests in the southern part of Yucatan Peninsula, Mexico. We collected soil samples (up to 30 cm depth) from 32 carbon monitoring plots and analyzed these for physical and chemical soil properties. Soil respiration measurements were carried out by using PP systems EGM-4 (an infrared gas analyzer). Analysis of variance (ANOVA), correlation, and regression was performed to test differences between forest age groups as the independent variable and soil respiration, organic as well as inorganic carbon in soil. Contrary to the hypothesis, SOC in the mineral soil horizon did not increase with forest age. Soil CO2 efflux did not correlate to soil organic carbon, it rather correlated to carbonate concentration in the soil. Higher CO2 efflux in carbonate rich soils can be explained probably by the faster decomposition but the slower ultimate mixing of organic matter in mineral soils of carbonate origin. However, it needs further investigation in separating soil CO2 efflux into autotrophic, heterotrophic, and abiotic fluxes to better understand the role of carbonate soils in atmospheric CO2 exchange.


19.
- Artículo con arbitraje
Assessment of hammocks (petenes) resilience to sea level rise due to climate change in Mexico
Hernández Montilla, Mariana Carolina ; Martínez Morales, Miguel Ángel (coaut.) (-2020) ; Posada Vanegas, Gregorio (coaut.) ; De Jong, Bernardus Hendricus Jozeph (coaut.) ;
Contenido en: Plos One Vol. 11, no. 9, e0162637 (September 2016), p. 1-20 ISSN: 1932-6203
PDF PDF
Resumen en: Inglés |
Resumen en inglés

There is a pressing need to assess resilience of coastal ecosystems against sea level rise. To develop appropriate response strategies against future climate disturbances, it is important to estimate the magnitude of disturbances that these ecosystems can absorb and to better understand their underlying processes. Hammocks (petenes) coastal ecosystems are highly vulnerable to sea level rise linked to climate change; their vulnerability is mainly due to its close relation with the sea through underground drainage in predominantly karstic soils. Hammocks are biologically importantbecause of their high diversity and restricted distribution. This study proposes a strategy to assess resilience of this coastal ecosystem when high-precision data are scarce. Approaches and methods used to derive ecological resilience maps of hammocks are described and assessed. Resilience models were built by incorporating and weighting appropriate indicators of persistence to assess hammocks resilience against flooding due to climate change at “Los Petenes Biosphere Reserve”, in the Yucatán Peninsula, Mexico. According to the analysis, 25% of the study area is highly resilient (hot spots), whereas 51% has low resilience (cold spots). The most significant hot spot clusters of resilience were located in areas distant to the coastal zone, with indirect tidal influence, and consisted mostly of hammocks surrounded by basin mangrove and floodplain forest. This study revealed thatmulti-criteria analysis and the use of GIS for qualitative, semi-quantitative and statistical spatial analyses constitute a powerful tool to develop ecological resilience maps of coastal ecosystems that are highly vulnerable to sea level rise, even when high-precision data are not available. This method can be applied in other sites to help develop resilience analyses and decision-making processes for management and conservation of coastal areas worldwide.


20.
- Artículo con arbitraje
*Solicítelo con su bibliotecario/a
Biomass resilience of Neotropical secondary forests
Poorter, Lourens (coaut.) ; Bongers, Frans (coaut.) ; Aide, T. Mitchell (coaut.) ; Almeyda Zambrano, Angélica M. (coaut.) ; Balvanera, Patricia (coaut.) ; Becknell, Justin M. (coaut.) ; Boukili, Vanessa (coaut.) ; Brancalion, Pedro H. S. (coaut.) ; Broadbent, Eben N. (coaut.) ; Chazdon, Robin L. (coaut.) ; Craven, Dylan (coaut.) ; Almeida Cortez, Jarcilene Silva (coaut.) ; Cabral, George A. L. (coaut.) ; De Jong, Bernardus Hendricus Jozeph (coaut.) ; Denslow, Julie Sloan (coaut.) ; Dent, Daisy H. (coaut.) ; DeWalt, Saara J. (coaut.) ; Dupuy, Juan Manuel (coaut.) ; Durán, Sandra M. (coaut.) ; Espírito Santo, Mario M. (coaut.) ; Fandino, María C. (coaut.) ; César, Ricardo G. (coaut.) ; Hall, Jefferson S. (coaut.) ; Hernández Stefanoni, José Luis (coaut.) ; Jakovac, Catarina C. (coaut.) ; Junqueira, André B. (coaut.) ; Kennard, Deborah (coaut.) ; Letcher, Susan G. (coaut.) ; Licona, Juan Carlos (coaut.) ; Lohbeck, Madelon (coaut.) ; Marín Spiotta, Erika (coaut.) ; Martínez Ramos, Miguel (coaut.) ; Massoca, Paulo E. S. (coaut.) ; Meave, Jorge A. (coaut.) ; Mesquita, Rita C. G. (coaut.) ; Mora, Francisco (coaut.) ; Muñoz, Rodrigo (coaut.) ; Muschler, Reinhold G. (coaut.) ; Nunes, Yule R. F. (coaut.) ; Ochoa Gaona, Susana (coaut.) ; Oliveira, Alexandre A. de (coaut.) ; Orihuela Belmonte, Dolores Edith (coaut.) ; Peña Claros, Marielos (coaut.) ; Pérez García, Eduardo A. (coaut.) ; Piotto, Daniel (coaut.) ; Powers, Jennifer S. (coaut.) ; Rodríguez Velázquez, Jorge (coaut.) ; Romero Pérez, Isabel Eunice (coaut.) ; Ruíz, Jorge (coaut.) ; Saldarriaga, Juan G. (coaut.) ; Sánchez Azofeifa, Gerardo Arturo (coaut.) ; Schwartz, Naomi B. (coaut.) ; Steininger, Marc K. (coaut.) ; Swenson, Nathan G. (coaut.) ; Toledo, Marisol (coaut.) ; Uriarte, María (coaut.) ; van Breugel, Michiel (coaut.) ; Van Der Wal, Hans (coaut.) ; Veloso, María D. M. (coaut.) ; Vester, Hans F. M. (coaut.) ; Vicentini, Alberto (coaut.) ; Vieira, Ima Celia G. (coaut.) ; Vizcarra Bentos, Tony (coaut.) ; Williamson, G. Bruce (coaut.) ; Rozendaal, Danaë M. A. (coaut.) ;
Contenido en: Nature Vol. 530, no. 211 (February 2016), p. 211–214 ISSN: 0028-0836
Nota: Solicítelo con su bibliotecario/a
Resumen en: Inglés |
Resumen en inglés

Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle1. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use2–4. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha−¹), corresponding to a net carbon uptake of 3.05 Mg C ha−¹ yr−¹, 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha−¹) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.