Términos relacionados

6 resultados encontrados para: AUTOR: González Mille, Donaji Josefina
  • «
  • 1 de 1
  • »
Resumen en: Inglés |
Resumen en inglés

The Coatzacoalcos Region in Veracruz, Mexico houses one of the most important industrial complexes in Mexico and Latin America. Lead is an ubiquitous environmental pollutant which represents a great risk to human health and ecosystems. Amphibian populations have been recognized as biomonitors of changes in environmental conditions. The purpose of this research is to measure exposure to lead and evaluate hematological and biochemical effects in specimens of giant toads (Rhinella marina) taken from three areas surrounding an industrial complex in the Coatzacoalcos River downstream. Lead levels in toads' blood are between 10.8 and 70.6 μg/dL and are significantly higher in industrial sites. We have found a significant decrease in the delta-aminolevulinic acid dehydratase (δ-ALAD) activity in blood from 35.3 to 78 % for the urban-industrial and industrial sites, respectively. In addition, we have identified a strong inverse relationship between the δ-ALAD activity and the blood lead levels (r = -0.84, p < 0.001). Hemoglobin and mean corpuscular hemoglobin levels, as well as the condition factor, are found to be lower at industrial sites compared with the reference sites. Our results suggest that the R. marina can be considered a good biomonitor of the δ-ALAD activity inhibition and hematological alterations at low lead concentrations.


Resumen en: Inglés |
Resumen en inglés

The Coatzacoalcos Region in Veracruz, Mexico houses one of the most important industrial complexes in Mexico and Latin America. Lead is an ubiquitous environmental pollutant which represents a great risk to human health and ecosystems. Amphibian populations have been recognized as biomonitors of changes in environmental conditions. The purpose of this research is to measure exposure to lead and evaluate hematological and biochemical effects in specimens of giant toads (Rhinella marina) taken from three areas surrounding an industrial complex in the Coatzacoalcos River downstream. Lead levels in toads' blood are between 10.8 and 70.6 μg/dL and are significantly higher in industrial sites. We have found a significant decrease in the delta-aminolevulinic acid dehydratase (δ-ALAD) activity in blood from 35.3 to 78 % for the urban–industrial and industrial sites, respectively. In addition, we have identified a strong inverse relationship between the δ-ALAD activity and the blood lead levels (r = −0.84, p < 0.001). Hemoglobin and mean corpuscular hemoglobin levels, as well as the condition factor, are found to be lower at industrial sites compared with the reference sites. Our results suggest that the R. marina can be considered a good biomonitor of the δ-ALAD activity inhibition and hematological alterations at low lead concentrations.


3.
- Artículo de divulgación
*En hemeroteca, SIBE-Campeche, SIBE-Chetumal, SIBE-San Cristóbal, SIBE-Tapachula, SIBE-Villahermosa
¿Como controlar a los peces diablo?
Ilizaliturri Hernández, César Arturo ; González Mille, Donaji Josefina (coaut.) ; Torre Dosal, Arturo (coaut.) ;
Contenido en: ECOfronteras No. 39 (mayo-agosto 2010), p. 16-18
Cerrar
SIBE Campeche
48921-50 (Disponible)
Disponibles para prestamo: 1
Cerrar
SIBE Chetumal
48921-30 (Disponible)
Disponibles para prestamo: 1
Cerrar
SIBE San Cristóbal
48921-20 (Disponible)
Disponibles para prestamo: 1
Cerrar
SIBE Tapachula
48921-40 (Disponible)
Disponibles para prestamo: 1
Cerrar
SIBE Villahermosa
48921-10 (Disponible)
Disponibles para prestamo: 1
Nota: En hemeroteca, SIBE-Campeche, SIBE-Chetumal, SIBE-San Cristóbal, SIBE-Tapachula, SIBE-Villahermosa
PDF PDF

4.
Artículo
*Solicítelo con su bibliotecario/a
Evaluation of enzyme activities in long-term polluted soils with mine tailing deposits of San Luis Potosí, México
Martínez Toledo, Ángeles (coaut.) ; Montes Rocha, Ángel (coaut.) ; González Mille, Donaji Josefina (coaut.) ; Espinosa Reyes, Guillermo ; Torres Dosal, Arturo ; Mejia Saavedra, Jesús J. (coaut.) ; Ilizaliturri Hernández, César Arturo (coaut.) ;
Contenido en: Journal of Soils and Sediments Vol. 17, no. 2 (February 2017), p. 364-375 ISSN: 1439-0108
Nota: Solicítelo con su bibliotecario/a
Resumen en: Inglés |
Resumen en inglés

Purpose San Luis Potosí is one of the largest metal producers; mining activity has been responsible for metal emissions for over 100 years, from several sources (deposits, tailings, effluents, and dusts) generating effects in human and ecosystem health. The objective of this study was to evaluate the effect of the concentrations of heavy metals in the soil health of four municipalities of San Luis Potosí contaminated with mine tailings, using enzyme activity as a biochemical endpoint. Materials and methods Four municipalities contaminated with residues of historical mining activity were analyzed (25 topsoil samples per type of site contaminated and reference). The parameters that were analyzed included pH; organic matter (OM); electrical conductivity (EC); percentage of clay, As, Cd, Cr, Cu, Hg, Pb, and Zn; and arylsulfatase (ARS), β-glucosidase (BG), urease (UR), and fluorescein diacetate hydrolysis (FDA) activities in soil. Differences among the parameters per municipality and type of site were evaluated using a factorial analysis of variance. The relationships were analyzed by Pearson’s correlation and a stepwise distance-based linear model permutation test (DistLM). Results were visualized using a distance-based redundancy analysis (dbRDA). A hazard quotient (HQ) for metals was calculated in order to estimate the effects on soil microbial processes.

Results and discussion A concentration gradient (mg/kg) of Zn (4744.5–65,585.7), Pb (1321.0–31,932.2), As (ND-8736.7), and Cu (130.9–8475.4) was found in the contaminated sites. The HQ showed a very high hazard level for the elements detected in all contaminated sites (1.4–655.8). The pattern of enzymatic inhibition found was ARS (95.8 %), UR (90.6 %), FDA (86.9 %), and BG (76.0 %). Strong negative relationships were observed among enzymatic activities and heavy metals in the following inhibitory effect Cu > As > Zn > Pb. Metals and covariables explained from 84 to 86 % of variability in enzyme activity. EC, Cu, and As showed a strong inhibitory effect; and parameters such as OM, pH, and clay were found to have a slightly inducing effect. Conclusions In this study, the heavy metal concentrations were higher than the ones obtained in other reports for this region. The HQ reveals the presence of possible risks for the health of life in the region. The decrease of enzyme activities in soil could trigger adverse changes in the flow of matter and energy in ecosystems. This study provides a field baseline that could be part of a long-term monitoring program for these locations.


5.
Artículo
PDF
Resumen en: Español | Inglés | Portugués |
Resumen en español

Los métodos para evaluar el riesgo en salud se basan, en general, en el monitoreo ambiental y en la estimación de la exposición a través de modelos matemáticos. La incertidumbre de tal estrategia es grande. En consecuencia, para incrementar la certidumbre sobre la evaluación de la exposición a los contaminantes, se ha propuesto el empleo de biomarcadores. No obstante, la complejidad de los nuevos escenarios de riesgo obliga a evaluar no solamente a las poblaciones humanas sino también al resto de la biota. Asimismo, factores ambientales, sociales y de salud, al afectar la vulnerabilidad, también deben ser considerados para la caracterización del riesgo. Estos factores de vulnerabilidad pueden evaluarse a través de indicadores. Al final, con los análisis ambientales, el uso de biomarcadores y el manejo de indicadores ambientales, sociales y de salud, puede evaluarse el riesgo de manera integrada (humanos y biota). En esta revisión se presentan las diversas estrategias empleadas por este grupo de trabajo para evaluar el riesgo en sitios contaminados, comunidades marginadas y en áreas afectadas por el cambio global climático.

Resumen en inglés

The most commonly used methods for risk assessment are based on environmental analysis and the use of mathematical models for the estimation of exposure. However, the uncertainty of this approach is high, as the models are based on scenarios that may be not the correct ones. In order to decrease the uncertainty, the use of biomarkers has been proposed. Furthermore, considering the complexity of pollution in some sites, these biomarkers can be used both in humans and biota in order to obtain better information for the definition of risks at those sites. In addition to biomarkers, social, health and environmental indicators have to be applied for risk characterization, as different factors of vulnerability can modify the extent of health risks in some communities. At the end, with environmental monitoring and the use of biomarkers and indicators of vulnerability, health risks in humans and biota (integrated risk assessment) can be assessed in different scenarios. In this paper we present the strategies that our group developed for the study of hazardous waste sites, vulnerable communities and areas impacted by climate change.

Resumen en portugués

Os métodos para avaliar o risco na saúde se baseiam, em geral, no monitoramento ambiental e na estimação da exposição através de modelos matemáticos. A incerteza de tal estratégia é grande. Em consequência, para incrementar a certeza sobre a avaliação da exposição aos contaminantes, tem sido proposta a utilização de biomarcadores. No entanto, a complexidade dos novos cenários de risco obriga a avaliar não somente as populações humanas mas também ao resto da biota. Da mesma forma, fatôres ambientais, sociais e de saúde, ao afetar a vulnerabilidade, também devem ser considerados para a caracterização do risco. Estes fatôres de vulnerabilidade podem avaliar-se através de indicadores. Finalmente, com as análises ambientais, o uso de biomarcadores e o manejo de indicadores ambientais, sociais e de saúde, pode-se avaliar o risco de maneira integrada (humanos e biota). Nesta revisão se apresentam as diversas estratégias empregadas por este grupo de trabalho para avaliar o risco em lugares contaminados, comunidades marginalizadas e em áreas afetadas pela mudança global climática.


6.
Artículo
Resumen en: Inglés |
Resumen en inglés

Mining is one of the most important industrial activities globally; however, mining processes have critical environmental impacts, as mining is a major source of metals and metalloids that contribute significantly to the pollution of soil, sediment, water and air. Heavy metals can impact the health of exposed human populations and nonhuman receptors. This study focused on arsenic because its genotoxicity is well-known. Previously, we proposed a methodology to evaluate and integrate risk from a single source affecting different biologic receptors. Here, we propose an alternative approach estimating arsenic exposure in children and kangaroo rats using probabilistic simulation with Monte Carlo modeling. The estimates are then associated to measured DNA damage and compared to both populations of children and rodents living in contaminated and in reference areas. Finally, based on the integrated analysis of the generated information, we evaluate the potential use of wild rodents (Dipodomys merriami) as a biomonitor at mining sites. Results indicate that the variation of genotoxicity in children of the reference site is approximately 2 units when compared to the children of the contaminated site. In the rodents we observed a variation of approximately 4 units between those of the reference site when compared to those living on the contaminated site. We propose that D. merriami can be used as a biomonitor organism in sites with mining activity, and that a non-lethal test can be used to evaluate risk from metal exposure.