Términos relacionados

14 resultados encontrados para: TEMA: Fitorremediación
11.
Capítulo de libro
*Solicítelo con su bibliotecario/a
Emergencia y desarrollo inicial de árboles tropicales nativos en suelo con petróleo crudo fresco pesado e intemperizado en Tabasco, México
Pérez Hernández, Isidro (autor) ; Ochoa Gaona, Susana (autora) ; Adams Schroeder, Randy Howard (autor) ; Rivera Cruz, María del Carmen (autora) ; Jarquín Sánchez, Aarón (autor) ; González Valdivia, Noel Antonio (autor) ; Geissen Geissen, Violette (autora) ;
Disponible en línea
Contenido en: Memoria. XXIII reunión científica-tecnológica forestal y agropecuaria, Tabasco 2011 / coordinación general: Eduardo Daniel Bolaños Aguilar ; edición, compilación y formación: Uriel Agustín Báez Ruiz, ...[et al.] ; diseño: Juan Carlos Solis Domínguez, ...[et al.] Villahermosa, Tabasco, México : Secretaría de Agricultura y Desarrollo Rural : Gobierno del Estado de Tabasco, 2011 páginas 132-134
Nota: Solicítelo con su bibliotecario/a

12.
Libro
Environmental biotechnology / M.H. Fulekar
Fulekar, M. H. ;
Enfield, NH : Science Publishers , c2010
Clasificación: 660.6 / F8
Bibliotecas: Tapachula
Cerrar
SIBE Tapachula
ECO020011748 (Disponible)
Disponibles para prestamo: 1
Índice | Resumen en: Inglés |
Resumen en inglés

This book provides information essential to students taking courses in biotechnology as part of an environmental sciences, environmental management, or environmental biology programs. It is also suitable for those studying water, waste management, and pollution abatement. Topics include biodiversity, renewable energy, bioremediation technology, recombinant DNA technology, genetic engineering, solid waste management, composting, vermicomposting, biofertilizer, chemical pesticides, biological control of pests, and genetically modified organisms. The book also discusses bioethics and risk assessment, intellectual property rights, environmental cleanup technologies, and environmental nanotechnology.

Índice

Preface
1. Environmental Biotechnology: A Foresíght
1.1 Biotechnology: A Historical Perspective
1.2 Environmental Biotechnology
1.3 Biodiversity
1.4 Biofuels and Bioenergy
1.5 Environmental Clean Up Technologies
1.6 Solid Waste Management
1.7 Abatement of Pollution
1.8 Genetic Engineering
1.9 Biosafety, Ethical and Property Issues
1.10 Bioinformatics for Environmental Remediation
1.11 Nanotechnology—Environmental Management
1.12 Conclusion
2. Biodiversity
2.1 Biodiversity
2.2 Biodiversity Components
2.3 Biodiversity Concept
2.4 Biodiversity and Evolution
2.5 Biodiversity Status
2.6 Biodiversity Values
2.7 Biodiversity Threatened
2.8 Threatened Species—IUCN Red List (2007)
2.9 Biodiversity Problems
2.10 Biodiversity Hotspot
2.11 Biodiversity Loss—Prevention
2.12 Biodiversity Conservaron
2.13 Relevant Articles of the CBD
2.14 Biodiversity—Future Prospects
2.15 References
3. Renewable Energy
3.1 Energy Generation
3.2 Coal's Energy Potential
3.3 Renewable Energy Types
3.4 Solar Energy
3.5 Solar Thermal Electric Power Plants
3.6 Wind Energy
3.7 Hydropower
3.8 Geothermal Power
3.9 Biomass Energy
3.10 Biomass Electrical Power Generation
3.11 Ethanol Production
3.12 Ethanol Production from Cellulosic Biomass
3.13 Production of Ethanol Starch-based Feedstock
3.14 Biogas Technology
3.15 Biodiesel
3.16 Biohydrogen Production
3.17 References
4. Bioremediation Technology
4.1 Bioremediation
4.2 Microbial Metabolism
4.3 Factors Influencing Metabolism
4.4 Bioremediation Monitoring
4.5 Types of Bioremediation
4.6 In-situ Bioremediation
4.7 Groundwater and Saturated Soil Remediation
4.8 Air Sparging
4.9 Biosparging
4.10 In-situ Remediation—Case Studies
4.11 Ex-situ Bioremediation
4.12 Surface Soil Contaminants Remediation: Case Study
4.13 Composting
4.14 Slurry Bioreactor

4.15 Bioremediation of Metals
4.16 GMO for Bioremediation
4.17 References
5. Phytoremediation
5.1 Phytoremediation Approaches
5.2 Technical Considerations
5.3 Types of Phytoremediation
5.4 Factors Influencing Phytoremediation
5.5 Uptake and Translocation
5.6 Enzymatic Transforrnations
5.7 Cellular Mechanisms for Heavy Metals Detoxification and Tolerance
5.8 Cell Wall and Root Exudates
5.9 Phytochelatins
5.10 Metallothioneins
5.11 Organic Acids and Amino Acids
5.12 Vascular Compartmentafization
5.13 Phytoremediation: Novel Transgene Approach
5.14 Phytoremediation: Case Studies
5.15 References
6. Recombinant DNA Technology and Applications
6.1 Recombinant DNA
6.2 Fundamentals of Recombinant DNA Technology
6.3 Basic Structure of DNA
6.4 Gel Electrophoresis
6.5 Expression of Recombinant DNA Molecules
6.6 Transgenic Plants
6.7 Transgenic Animals
6.8 Application of GMOs
6.9 Conclusion
6.10 References
7. Genetic Engineering for Remediation of Pollution
7.1 Introduction
7.2 Genes—Therapy
7.3 Genetic Engineering
7.4 Application of Genetic Engineering in Bioremediation
7.5 Genetically Modified Bacteria for the Bioremediation of Inorganic Pollutants
7.6 Application of Genetic Engineering in Phytoremediation
7.7 References
8 Biotechnology—Pollution Abatement
8.1 Environmental Pollution
8.2 Wastewater Treatment
8.3 Disinfection Treatment Process
8.4 Natural Biological Treatment Systems
8.5 Biological Treatment
8.6 Energy Reactions
8.7 Aerobic Biological Process
8.8 Rotating Biological Contractors
8.9 Rhizosphere Remediation Technology
8.10 Activated Sludge Technology
8.11 Activated Sludge Technology Process
8.12 Modified - Activated Sludge Technology
8.13 Anaerobic Biological Treatment
8.14 Anaerobic Baffled Reactor (ABR)
8.15 Bioscrubber
8.16 Two-phase Partition Bioreactors (TPPB)
8.17 References

10. Composting
10.1 Compost
10.2 Guide—Creating Compost
10.3 Composting Process
10.4 Composting Methods
10.5 Composting Challenges
10.6 Compost—Benefits
10.7 Environmental Benefits
10.8 References
11. Vermicomposting
11.1 Vermicompost
11.2 Earthworm Biology
11.3 What to Compost
11.4 Create Home for Worms
11.5 Bedding
116 Vermicompost Bins
11.7 Case Study—Research Findings
11.8 Microorganism Diversity Monitoring/Microbial Assay
11.9 Vermicompost Properties
11.10 Vermicompost—Advantages
11.11 References
12. Biofertilizers
12.1 Biofertilizers—Perspective
12.2 Biofertilizers—Types
12.3 Rhizobium
12.4 Azospirillum
12.5 Azotobacter
12 6 Phosphate Solubilizing Microorganisms
12.7 Mycorrhiza
12.8 Blue Green Algae
12.9 Azolla
12.10 Compost
12.11 Biofertilizers— Potential Use
12.12 Biological Nitrogen Fixation
12.13 Research Studies
12.14 References
13. Chemical Pesticides
13.1 Pesticides
13.2 Classification of Pesticides (ESCAP 1991)
13.3 Pesticides Industry
13.4 Pesticides Manufacturing
13.5 Pesticides Formulation
13.6 Main Pesticides Groups
13.7 Pesticides Regulation
13.8 Mode of Action
13.9 Environmental Effects
13.10 Health Effects
13.11 Advantages of Chemical Pesticides
13.12 Disadvantages of Chemical Pesticides
13.13 Management of Chemical Pesticides
13.14 References
14. Biological Control of Pests
14.1 Biological Control
14.2 History and Theory of Biological Control
14.3 Important Crops and Insect Pests
14.4 Selection—Biological Control Agents
14.5 Biocontrol Agents—Approaches
14.6 Exploitalion of Natural Enemies
14.7 Types of Biological Control
14.8 Conservation Measures
14.9 Genetic Engineering to Improve Sterile Male Technique
14.10 Biological Control—Success Stories
14.11 Recent Research in Field
14.12 Advantages and Disadvantages of Biological Control

14.13 References
15. Biopesticides
15.1 Biopesticides—Concept
15.2 Types of Biopesticides
15.3 Biopesticides—Control
15.4 Regulation of Biopesticides
15.5 Biological Pesticides
15.6 Formulation
15.7 Stabilization
15.8 Mode of Action
15.9 Advantages of Microbial Insecticides
15.10 Disadvantages of Microbial Insecticides
15.11 Biotechnological Applications
15.12 Biochemical Pest Control Agents
15.13 References
16. Integrated Pest Management
16.1 IPM—Concept
16.2 IPM—Components
16.3 Control Techniques
16.4 Biological Control
16.5 Chemical and Physical Control
16.6 Pest Identification
16.7 Biological Control of Pest Mites in Apple—Case Studies
16.8 Nonchemical Control Methods
16.9 IPM—Conventional and Biointensive
16.10 Engineering the Future
16.11 IPM—Planning Consideration
16.12 Pest Management Practices: USDA Survey Summary Highlights
16.13 IPM Programmes Work—Conclusion
16.14 References
17. Genetically Modified Organisms in Environment
17.1 Genetic Modification—Perspective
17.2 Genetically Modified Products—Benefits
17.3 Genetically Modified Foods
17.4 Genetically Modified Crops in the USA
175 Genetically Modified Food—Controversies
17.6 Ecological and Environmental Impact of Engineered Crops
17.7 Environmental Impacts of Transgenic Crops—Case Studies
17.8 Risk Assessment of GM Foods for Human Health and Environment
17.9 Environmental Risks of GMO
17.10 GMO—Risk Assessment
17.11 GMO Release Criteria
17.12 Need GMO Regulation
17.13 Guidance Documents
17.14 Conclusion
17.15 References
18- Biosafety
18.1 Biosafety Concern
18.2 GMO as an Environmental and Health Issues
18.3 Biosafety Protocol
18.4 Assessment and Management of Risk
18.5 Risk Management Measures for Controlled Releases
18.6 National Biosafety Frarnework—Cornponents

18.7 National Biosafety Frarnework—Training and Capacity Building
18.8 GMOs—Perspectives
18.9 References
19. Bioethics and Risk Assessment
19.1 Bioethics Concern
19.2 Bioethical Definitions
19.3 Role of Bioethicist
19.4 Ethical Issues
19.5 Genetically Modified Food—Risks
19.6 Genetically Modified Crops—Risks
19.7 Genetically Engineered Animals and Ethics
19.8 Genetically Modified Microorganisms (GMMs)
19.9 Safety Assessment
19.10 Patenting Life and Morality
19.11 Ethical Issues—Debate
19.12 References
20. Intellectual Property Rights
20.1 Perspectives
20.2 Patents
20.3 Intellectual Property Rights (IPRs)
20.4 Intellectual Property Rights—Protected Internationally
20.5 Criteria for Patentable Inventions
20.6 Specification: Description and Claims
20.7 Patent Process
20.8 Case Studies
20.9 Naturally Occurring Substances—Patenting
20.10 Biotechnology and Patenting
20.11 Legal and Moral Issues
20.12 IPR—International Strategy
20.13 References
21. Bioinformatics—Environmental Cleanup Technologies
21.1 Bioinformatics—Environmental Perspectives
21.2 Emerging Technologies
21.3 Genomics
21.4 Application of Genomics
21.5 Proteomics
21.6 Bioinformatics—Future Trend for Bioremediation
21.7 References
22. Environmental Nanotechnolgy
22.1 Perspectives
22.2 Nanotechnology
22.3 Environmental Nanotechnology
22.4 Nanotechnologies—Environmental Applications
22.5 Nanotechnology—Scope for Future Research
22-6 References
Index
Color Plate Section


13.
Tesis
La fitorremediación de suelos contaminados con petróleo mediante la utilización de la planta de arroz (Oriza sativa L.) / Gilberto Morales Guzmán
Morales Guzmán, Gilberto ; Rivera Cruz, María del Carmen (consejero) ; Zavala Cruz, Joel (asesor) ; Ferrera Cerrato, Ronald (asesor) ; Geissen Geissen, Violette (asesora) ;
Cárdenas, Tabasco, México : Colegio de Postgraduados, Campus Tabasco , 2007
Clasificación: TE/633.18097263 / M6
Bibliotecas: Villahermosa
Cerrar
SIBE Villahermosa
ECO050005090 (Disponible)
Disponibles para prestamo: 1

14.
Libro
Phytoremediation: transformation and control of contaminants / edited by Steven C. McCutcheon, Jerald L. Schnoor
McCutcheon, Steve C. (coaut.) ; Schnoor, Jerald L. (coaut.) ;
Hoboken, New Jersey : Wiley-Interscience, Inc. , c2003
Clasificación: 628.5 / P5
Bibliotecas: Villahermosa
Cerrar
SIBE Villahermosa
ECO050006030 (Disponible)
Disponibles para prestamo: 1
Índice | Resumen en: Inglés |
Resumen en inglés

Phytoremediation involves the use of vascular plants, algae, and fungi to remove and control waste or spur waste breakdown by microorganisms in the soil zone that surrounds and is influenced by the roots of plants. The diverse wastes that can be managed by using phytoremediation include xenobiotic organic chemicals, sewage, salts, nutrients, heavy metals, metalloids, and air pollutants. Phytoremediation: Transformation and Control of Contaminants provides an authoritative account of the history and the most recent developments of this exciting, emerging field. Steven McCutcheon and Jerald Schnoor’s insightful book defines the current state of the science of phytoremediation and points the way to further possible applications. Site managers and engineers will receive guidance in selecting plants to clean up contaminated sites cost effectively, while plant ecologists and biochemists will appreciate the nuts and bolts analysis of how phytoremediation works, and suggestions of directions for research. The editors divide their one-of-a-kind text into seven clearly defined sections for easy reference: • Overview of Science and Applications. • Fundamentals of Phytotransformation and Control of Contaminants. • Science and Practice for Aromatic, Phenolic, and Hydrocarbon Contaminants. • Transformation and Control of Explosives. • Fate and Control of Chlorinated Solvents and Other Halogenated Compounds. • Modeling, Design, and Field-Pilot Testing. • Latest Advances. Environmental, remediation, and site engineers; site managers; plant and s oil scientists; ecologists; and environmental toxicologists, chemists, and microbiologists will find Phytoremediation: Transformation and Control of Contaminants to be an invaluable addition to their professional libraries.

Índice

Series Preface
Preface
Contributors
Editorial Review Board
Section I: Overview of Science and Applications
1. Overview of Phytotransformation and Control of Wastes
2. Uptake and Metabolism of Organic Compounds: Green-Liver Model
3. Making Phytoremediation a Successful Technology
Section II: Fundamentals of Phytotransformation and Control of Contaminants
4. Some Fundamental Advances for Xenobiotic Chemical
5. Enzymes Used by Plants and Microorganisms to Detoxify Organic Compounds
6. Plant Tolerances to Contaminants
7. Root Development and Rooting at Depths
8. Measuring and Modeling Tree and Stand Level Transpiration
Section III: Science and Practice For Aromatic, Phenolic, and Hydrocarbon Contaminants
9. Transforming of Organic Contaminants by Different Plant Systems
10. Ecology of Rhizosphere Bioremediation
11. Biodegradation of Petroleum Hydrocarbons in the Rhizosphere
Section IV: Trtansformation and Control of Explosives
12. Role of Plants in the Transformation of Explosives
13. Transformation Kinetics of Trinitrotoluene Conversion in Aquatic Plants
14. Proof of Phytoremediation for Explosives in Water and Soil
15. Phytorestoration at the Iowa Army Ammunition Plant
Section V: Fate and Control of Chlorinated Solvents and Other Halogenated Compounds
16. Sequestration and Transformation of Water Soluble Halogenated Organic Compounds Using Aquatic Plants, Algae, and Microbial Mats
17. Fate of Trichloroethylene in Terrestrial Plants
18. Uptake, Metabolism, and Phytovolatilization of Trichloroethylene by Indigenous Vegetation: Impact of Precipitation
19. Multiple-Process Assessment for a Chlorinated-Solvent Plume
20. Five-Year Pilot Study: Aberdeen Proving Ground, Maryland
Section VI: Modeling, Design, and Field Pilot Testing
21. Modeling and Design of Phytoremediation
22. Hydrologic Feasibility Assessment and Design in Phytoremediation

23. Waste Management Using Trees: Wastewater, Leachate, and Groundwater Irrigation
24. Salt Tolerant Plants to Concentrate Saline Waste Streams
Section VII: Latest Advances
25. Metabolism and Genetics of Atmospheric Nitrogen Dioxide Control Using Pollutant-Philic Plants
26. Treatment of Atmospheric Halogenated Hydrocarbons by Plants and Fungi
27. Phytoremediation of Methyl Tertiary-Butyl Ether
28. Phytoremediation of Cyanide-Polluted Soils
29. Phytoremediation of Perchlorate
30. Databases and Protocol for Plant and Microorganism Selection: Hydrocarbons and Metals
31. Field Evaluation of Phytotechnologies
Index of Name of Plants
Index